1,078,379 research outputs found
Aplikasi Structural Equation Modelling Dalam Perencanaan Strategi Pemasaran Berbasis Kepemimpinan Dan Budaya Organisasi (Studi Kasus UKM Batik Tradisional)
Persaingan USAha pada kelompok UKM Batik tradisional semakin lama semakin ketat. Hal ini menuntut Perusahaan untuk merancang strategi bersaing yang sesuai dengan kemampuan internal Perusahaan dan tuntutan eksternal lingkungan persaingan. Salah satu aktivitas penting dalam menjabarkan strategi bersaing kedalam strategi fungsional pemasaran adalah dengan mengembangkan budaya unggul pada semua entitas organisasi USAha tersebut. Budaya dan gaya kepemimpinan pemilik Perusahaan akan mempengaruhi pilihan UKM Batik tersebut dalam strategi bersaingnya, khususnya strategi pemasaran produk mereka. Penelitian ini menggunakan metode Structural Equation Modelling (SEM) yang akan digunakan untuk memeriksa validitas dari faktor-faktor konfirmatori yang berupa variabel-variabel pembentuk gaya kepemimpinan seperti kharisma, inspirasi, stimulus intelektual, dan perhatian individual serta faktor-faktor budaya organisasi seperti simbol material, perilaku, linguistik, dan individu. SEM juga digunakan untuk menguji model berkaitan dengan hubungan antar variabel laten yang sesuai analisis path, serta mendapat model terstruktur yang bermanfaat untuk memperkirakan strategi pemasaran yang sesuai. Dari variabel-variabel pembentuk gaya kepemimpinan, maka faktor stimulus intelektual (=0,37) memiliki pengaruh yang sangat dominan terhadap strategi pemasaran. Dari sisi faktor-faktor budaya organisasi, maka faktor simbol perilaku (=0,69) memiliki peran dominan. Berdasarkan hasil analisis SWOT dengan IFAS = 1,4 dan EFAS = 0,75, maka grand strategi agresif dirasa tepat diaplikasikan. Beberapa strategi yang direkomendasikan adalah penetrasi pasar, pengembangan pasar, pengembangan produk, integrasi dan diversifikasi produk
Some nonlinear second order equation modelling rocket motion
In this paper, we consider a nonlinear second order equation modelling rocket
motion in the gravitational field obstructed by the drag force. The proofs of
the main results are based on topological fixed point approach.Comment: 8 page
General tooth boundary conditions for equation free modelling
We are developing a framework for multiscale computation which enables models
at a ``microscopic'' level of description, for example Lattice Boltzmann, Monte
Carlo or Molecular Dynamics simulators, to perform modelling tasks at
``macroscopic'' length scales of interest. The plan is to use the microscopic
rules restricted to small "patches" of the domain, the "teeth'', using
interpolation to bridge the "gaps". Here we explore general boundary conditions
coupling the widely separated ``teeth'' of the microscopic simulation that
achieve high order accuracy over the macroscale. We present the simplest case
when the microscopic simulator is the quintessential example of a partial
differential equation. We argue that classic high-order interpolation of the
macroscopic field provides the correct forcing in whatever boundary condition
is required by the microsimulator. Such interpolation leads to Tooth Boundary
Conditions which achieve arbitrarily high-order consistency. The high-order
consistency is demonstrated on a class of linear partial differential equations
in two ways: firstly through the eigenvalues of the scheme for selected
numerical problems; and secondly using the dynamical systems approach of
holistic discretisation on a general class of linear \textsc{pde}s. Analytic
modelling shows that, for a wide class of microscopic systems, the subgrid
fields and the effective macroscopic model are largely independent of the tooth
size and the particular tooth boundary conditions. When applied to patches of
microscopic simulations these tooth boundary conditions promise efficient
macroscale simulation. We expect the same approach will also accurately couple
patch simulations in higher spatial dimensions.Comment: 22 page
Interacting single-file system: Fractional Langevin formulation versus diffusion-noise approach
We review the latest advances in the analytical modelling of single file
diffusion. We focus first on the derivation of the fractional Langevin equation
that describes the motion of a tagged file particle. We then propose an
alternative derivation of the very same stochastic equation by starting from
the diffusion-noise formalism for the time evolution of the file density
condensate for light quarks beyond the chiral limit
We determine the condensate for quark masses from zero up to
that of the strange quark within a phenomenologically successful modelling of
continuum QCD by solving the quark Schwinger-Dyson equation. The existence of
multiple solutions to this equation is the key to an accurate and reliable
extraction of this condensate using the operator product expansion. We explain
why alternative definitions fail to give the physical condensate.Comment: 13 pages, 8 figure
A framework for power analysis using a structural equation modelling procedure
BACKGROUND: This paper demonstrates how structural equation modelling (SEM) can be used as a tool to aid in carrying out power analyses. For many complex multivariate designs that are increasingly being employed, power analyses can be difficult to carry out, because the software available lacks sufficient flexibility. Satorra and Saris developed a method for estimating the power of the likelihood ratio test for structural equation models. Whilst the Satorra and Saris approach is familiar to researchers who use the structural equation modelling approach, it is less well known amongst other researchers. The SEM approach can be equivalent to other multivariate statistical tests, and therefore the Satorra and Saris approach to power analysis can be used. METHODS: The covariance matrix, along with a vector of means, relating to the alternative hypothesis is generated. This represents the hypothesised population effects. A model (representing the null hypothesis) is then tested in a structural equation model, using the population parameters as input. An analysis based on the chi-square of this model can provide estimates of the sample size required for different levels of power to reject the null hypothesis. CONCLUSIONS: The SEM based power analysis approach may prove useful for researchers designing research in the health and medical spheres
- …
