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Abstract

We are developing a framework for multiscale computation which

enables models at a “microscopic” level of description, for example

Lattice Boltzmann, Monte Carlo or Molecular Dynamics simulators,

to perform modelling tasks at “macroscopic” length scales of interest.

The plan is to use the microscopic rules restricted to small “patches”

of the domain, the “teeth”, using interpolation to bridge the “gaps”.

Here we explore general boundary conditions coupling the widely sep-

arated “teeth” of the microscopic simulation that achieve high order

accuracy over the macroscale. We present the simplest case when the

microscopic simulator is the quintessential example of a partial differ-

ential equation. We argue that classic high-order interpolation of the

macroscopic field provides the correct forcing in whatever boundary

condition is required by the microsimulator. Such interpolation leads

to Tooth Boundary Conditions which achieve arbitrarily high-order

consistency. The high-order consistency is demonstrated on a class of

linear partial differential equations in two ways: firstly through the

eigenvalues of the scheme for selected numerical problems; and sec-

ondly using the dynamical systems approach of holistic discretisation

on a general class of linear pdes. Analytic modelling shows that, for a

wide class of microscopic systems, the subgrid fields and the effective

macroscopic model are largely independent of the tooth size and the

particular tooth boundary conditions. When applied to patches of
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microscopic simulations these tooth boundary conditions promise ef-

ficient macroscale simulation. We expect the same approach will also

accurately couple patch simulations in higher spatial dimensions.

Keywords: multiscale computation, gap tooth scheme, coupling boundary
conditions, high order consistency
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1 Introduction

The components of physical systems often operate on vastly different space
and time scales (Dolbow, Khaleel & Mitchell 2004). We must somehow sim-
ulate such systems on the scale of interest and operation. But systems that
depend on physical processes at multiple scales pose notorious difficulties.
These multiscale difficulties are major obstacles to progress in fields as di-
verse as environmental and geosciences, climate, materials, combustion, high
energy density physics, fusion, bioscience, chemistry, power grids and infor-
mation networks (Dolbow et al. 2004).

Here we further develop the equation free approach to multiscale mod-
elling (Kevrekidis et al. 2003). Given a numerical simulator for physical com-
ponents at much smaller scales than the scale of primary interest, the aim
of the methodology is to bridge the space and time scales to simulations re-
solving the macroscale of interest. Here we focus on bridging space scales
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1 Introduction 3

by improving the accuracy of the gap-tooth methodology for microsimula-
tors (Gear et al. 2003, Samaey et al. 2004, 2005). Crucially, our gap-tooth
methods must adapt to whatever microsimulator code is provided; one key
application of this work is to microsimulators that are tried and tested legacy
codes that we do not want to modify.

The equation-free approach provides on the fly closure methods which
constitute critical components of, for example, mathematical homogeniza-
tion (Samaey et al. 2005, Gustafsson & Mossino 2003, Balakotaiah & Chang
2003, e.g.), renormalization group techniques (Ei et al. 2000, Mudavanhu & O’Malley
2003, Chorin & Stinis 2005, e.g.), and multiscale finite elements (Hou & Wu
1997, Chen & Hou 2002, e.g.). These closure methods not only need to be
computationally efficient but also need to be capable of reproducing the phys-
ical dynamics with high fidelity. That is, we seek a methodology that can be
systematically refined.

Using microscopic simulators of the one dimensional Burgers’ equation,
Roberts & Kevrekidis (2005) demonstrated the possibility of achieving high
order accuracy in the gap-tooth scheme for macroscale dynamics. The par-
ticular microsimulator we use is a fine scale discretization of the pde which
we execute only in the interior of the teeth (see Figure 1). At each time step
during execution, the microsimulator within each tooth requires boundary
values which must be continuously updated. If the microsimulator was to be
executed over the entire macrodomain, these boundary values would natu-
rally come from the immediately neighboring fine grid; this grid is missing
in gap-tooth simulation. That pilot study only considered microsimulators
which had boundary conditions of specified flux at the edges of their simula-
tion teeth. Here we generalise the analysis to consider microsimulators with
either

• Dirichlet boundary conditions of specified field u at the tooth edges,
Section 2,

• mixed boundary conditions of specified avj±b∂xvj at the tooth edges,
Section 3, or

• nonlocal two-point boundary conditions such as those arising in a mi-
croscale discretisation of a pde, Section 4.

Consider the gap-tooth scheme (Gear et al. 2003, Samaey et al. 2004,
e.g.) illustrated in Figure 1. Let vj(x, t) be the fine scale, microscopic field
in the jth tooth, and Uj the jth coarse grid value; that is, the value at the
center of each tooth. Let the tooth width be h. Then the edge of a tooth
lies at a distance h/2 from its coarse grid point, a fraction r = h/(2H) to
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1 Introduction 4

Figure 1: simulation of Burgers’ equation using Dirichlet boundary condi-
tions on the teeth (specified u on the edges).

the next coarse grid point. The amount of computation performed by mi-
crosimulators is proportional to the width of the (microscale) teeth. Hence
we aim for the fraction r to be as small as possible, so that the teeth are
a relatively small part of the physical domain and the computational cost
minimised. The coupling rule developed in Sections 2, 3 and 4 is that you
obtain whatever values are necessary for the boundaries of the microscopic
simulators by classic interpolation of the macroscopic grid values from neigh-
bouring teeth. As a nonlinear example of the coupling we develop, Figure 1
shows a gap-tooth simulation of the nonlinear dynamics of Burgers’ equation
in one spatial dimension.

This coupling rule promotes a strong connection between classic finite dif-
ference discretisations of pdes, classic finite elements, and the methodology
of the gap-tooth scheme. First, the pde acts as the quintessential example
of a microsimulator in that it informs us of the dynamics in an ‘infinitesimal
patch’. The only difference between the gap-tooth scheme and the spatial
discretisation of pdes is that the microsimulators in the gap-tooth scheme
encode the dynamics on small finite patches, whereas the pde encodes the
dynamics on infinitesimal patches. Consequently, classic interpolation serves
the same role in both: namely, the interpolation appropriately transfers infor-
mation from the macroscale of interest to the microscale simulators. Second,
the theoretical support for the gap-tooth scheme is based upon a subgrid scale
structure, as is the classic finite element method. Also, the solvability condi-
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2 Dirichlet teeth (specified u) 5

tion in the construction of the theoretical gap-tooth model is similar to the
Galerkin projection of finite elements. But whereas finite elements impose a
class of subgrid fields, both the theoretical approach here and the gap-tooth
scheme use actual subgrid scale dynamics, obtained from the microsimulator
or the pde, to obtain appropriate subgrid scale fields. Thus this approach
systematically implements model closures for macroscale discretisations.

In Section 5 we prove that classic interpolation connects accurately the
teeth across the gaps for the general linear fourth order pde. The technique
of holistic discretisation (Roberts 2001b, e.g.) resolves subgrid scale struc-
tures to reproduce with high fidelity the dynamics of specified pdes (Roberts
2002). The techniques were adapted by Roberts & Kevrekidis (2005) to the
gap-tooth scheme in the case where the microsimulator requires Neumann
boundary conditions of specified slope/flux (see Section 3). Using the same
techniques, Section 5 analyses the use of classic interpolation of macroscale
grid values in the microscale simulators and shows the following desirable
properties:

• the approach generates macroscopic discretisations which are consistent
with the microscopic dynamics to high order in the macroscopic tooth
separation H;

• the macroscopic model and the microscopic solution field are essentially
independent of the size of the teeth, measured by r; and

• the macroscopic model and the microscopic solution field are essentially
independent of the details of the tooth boundary conditions (tbcs) that
couple the teeth together.

Thus our proposed rule generates gap-tooth schemes that may be systemati-
cally refined to high order accuracy, and gives rise to macroscale simulations
that are largely independent of irrelevant microscale parameters.

2 Dirichlet teeth (specified u)

In this section we consider the case of microsimulators that require at each
time step the field values on the edge of each spatial patch to be specified.
We model this case by pdes with Dirichlet conditions coupling the dynamics
in the teeth. The values for these Dirichlet conditions are obtained by inter-
polation across the gaps between the teeth using finite difference operators
and the exact relationships between the operators. When applied to simple
diffusion, the resulting scheme has high order accuracy.
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2 Dirichlet teeth (specified u) 6

Discrete operators are essential in the analysis. Define the shift operator
Eu(x) = u(x + H) and equivalently EUj = Uj+1 as appropriate for steps
on the coarse grid size H. Then we use the following identities for discrete
operators (National Physical Laboratory 1961, p.65, e.g.):

mean µ = 1
2
(E1/2 + E−1/2) , (1)

difference δ = E1/2 − E−1/2 , (2)

shift E = 1 + µδ + 1
2
δ2 , (3)

derivative H∂x = 2 sinh−1 1
2
δ = δ − 1

6
δ3 + O

(

δ5
)

, (4)

µ2 = 1 + 1
4
δ2 . (5)

Formulae involving these operators become more accurate as the differences δ

become small. Such small differences arise either as the macroscopic grid size
H → 0 or equivalently as the gradients of the physical field u become small.

For example, Roberts & Kevrekidis (2005) showed arbitrary order consis-
tent macroscopic dynamics from a gap-tooth scheme as the grid size H → 0 .
The key to that analysis is the following transformation of the operator for
evaluating spatial derivatives H∂x at the patch boundaries E±r:

E±rH∂x = (1 + µδ + 1
2
δ2)±r2 sinh−1 1

2
δ .

But this right-hand side, when expanded in a Taylor series in small differ-
ences δ, is composed of terms which have an odd number of centred operators
δ and µ. Consequently the right-hand side above would require field values
halfway between the grid values. These are unknown. Instead, from (5),
multiply the right-hand side by the identity µ/

√

1 + δ2/4, and then expand
in small differences δ:

E±rH∂x = (1 + µδ + 1
2
δ2)±r2 sinh−1 1

2
δ

=
µ

√

1 + 1
4
δ2

(1 + µδ + 1
2
δ2)±r2 sinh−1 1

2
δ

= µδ ± rδ2 − (1
6

− 1
2
r2)µδ3 ∓ r( 1

12
− 1

6
r2)δ4

+ ( 1
30

− 1
8
r2 + 1

24
r4)µδ5 ± r( 1

90
− 1

36
r2 + 1

120
r4)δ6

− ( 1
140

− 7
240

r2 + 1
72

r4 − 1
720

r6)µδ7

∓ r( 1
560

− 7
1440

r2 + 1
480

r4 − 1
5040

r6)δ8 + O
(

δ9
)

. (6)

For microsimulators with Dirichlet boundary conditions, we adapt the
earlier analysis of Roberts & Kevrekidis (2005). But instead of determining
the slopes at the tooth boundaries as above, the following interpolation of
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2 Dirichlet teeth (specified u) 7

Table 1: Growth rates λ of perturbations from steady state u = 0 : for
diffusion (8) with m teeth, H = 2π/m ; with gap to tooth ratio r = 0.1 ;
n = 11 points in the microscale grid; and with the fourth order tbc (9).

m 1 2,3 4,5 6,7 m + 1 : 2m

4 6 · 10−12 −0.946256 −2.166285 n/a −397.2

8 −3 · 10−12 −0.996073 −3.785024 −7.121435 −1588.

16 −1 · 10−10 −0.999750 −3.984293 −8.832102 −6355.

32 0 −0.999986 −3.998999 −8.988613 −25421.

the macroscopic field determines the field values u on the edges of the teeth:

E±r = (1 + µδ + 1
2
δ2)±r

= 1 ± rµδ + 1
2
r2δ2 ± 1

3!
r(r2 − 1)µδ3 + 1

4!
r2(r2 − 1)δ4

± 1
5!
r(r2 − 1)(r2 − 4)µδ5 + 1

6!
r2(r2 − 1)(r2 − 4)δ6

± 1
7!
r(r2 − 1)(r2 − 4)(r2 − 9)µδ7

+ 1
8!
r2(r2 − 1)(r2 − 4)(r2 − 9)δ8 + O

(

δ9
)

. (7)

The pattern in the above interpolation formula is clear. Now we explore the
numerical performance of a gap-tooth scheme using this formula to determine
teeth boundary conditions.

Consider gap-tooth simulations of the simple diffusion equation

∂u

∂t
=

∂2u

∂x2
, and 2π-periodic in x. (8)

Imagine we only have access to the dynamics through a microscopic simulator
of the diffusion (8), here coded by a fine discretisation on n grid points, spaced
a distance η = h/(n−1) apart, across a tooth of microscopic width h = rH .
The time integration is an explicit scheme with a microscopic time step,
typically ∆t = 10−6–10−4. Figure 2 shows an example of the initially rapid
microscopic evolution within one tooth; the microsimulator, coupled to its
neighbors, rapidly evolves to a smooth state. Figure 3 similarly shows the
initial evolution in two neighbouring teeth and how the smooth subgrid field
arises through the coupling to the neighbouring teeth. Similar dynamics
takes place during the initial instants of the Burgers’ evolution shown in
Figure 1.

Firstly we implement the following tbc. On the edge of the jth tooth,
at x = Xj ± rH , the boundary condition of the fine discretisation is that the
field

vj =
[

1 ± rµδ + 1
2
r2δ2 ± 1

6
r(r2 − 1)µδ3 + 1

24
r2(r2 − 1)δ4

]

Uj . (9)
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2 Dirichlet teeth (specified u) 8

Figure 2: view of the initial microscopic evolution within a tooth with dy-
namics described by the diffusion pde (8) and coupled to its neighbours.

Figure 3: view of the initial microscopic evolution within a pair of neighbour-
ing teeth with dynamics described by the diffusion pde (8) and also coupled
to their neighbours.
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2 Dirichlet teeth (specified u) 9

Table 2: Growth rates λ of perturbations from steady state u = 0 : for
diffusion (8) with m teeth, H = 2π/m ; with gap to tooth ratio r = 0.1 ;
n = 11 points in the microscale grid; and with the sixth order tbc.

m 1 2,3 4,5 6,7 m + 1 : 2m

4 −5 · 10−12 −0.981981 −2.453767 n/a −397.2

8 1 · 10−11 −0.999653 −3.927925 −7.835158 −1588.

16 8 · 10−11 −1.000001 −3.998611 −8.966332 −6355.

32 8 · 10−10 −1.000002 −4.000004 −8.999518 −25421.

The first few terms of (7) provide this by interpolation from the surround-
ing coarse grid values. For the jth tooth this tbc involves macroscopic grid
values Uj−2, . . . , Uj+2 only, and thus we should be able to achieve O

(

H4
)

con-
sistency with the microsimulator. We numerically linearize the map over one
microscopic time step by systematically perturbing each and every micro-
scopic value from zero (there are mn such microscopic values, one for each of
n fine grid points in each of m teeth). We then transform the eigenvalues µ

of this map to growth rates λ = log(µ)/∆t . The mn growth rates fall into
n groups of m modes. Each group corresponds to a microscopic internal
mode of the dynamics; the mode is essentially the same in each tooth. Large
negative growth rates correspond to rapidly decaying internal modes with
significant microscopic structure within each tooth. The group of m modes
with small growth rates correspond to the relatively slowly evolving macro-
scopic modes of interest that arise through the coupling of the microscopic
dynamics across the teeth. Table 1 shows the leading seven growth rates,
and the magnitude of the leading internal growth rate, for various numbers
of teeth, m = 4, 8, 16, 32 . The exact growth rates of the diffusion pde (8) are
λ = −k2 for integer k. The table shows that as the number of teeth doubles,
the accuracy of the growth rates of the macroscopic modes improves by a
factor of about 16. This is consistent with an O

(

H4
)

method as predicted
for diffusion with tbc (9).

Table 2 shows the even higher order accuracy from implementing sixth
order tbcs from (7)—growth rates slightly larger than the ideal seem to be
due to the relatively small number of microscopic grid points within the teeth.
These sixth order tbcs are used in the simulations of the nonlinear Burgers’
equation shown in Figure 1. This simulation suggests that gap-tooth schemes
employing such tbcs even for nonlinear systems are effective.
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3 Mixed boundary conditions for the teeth 10

Table 3: Growth rates λ of perturbations from steady state u = 0 : for
diffusion (8) with m teeth, H = 2π/m ; with gap to tooth ratio r = 0.1 ;
n = 11 points in the microscale grid; and with the mixed tbc (10) with
a = 0.95 and b = 0.05 .

m 1 2,3 4,5 6,7 m + 1 : 2m

4 9 · 10−12 −0.939448 −2.151772 n/a −240.7

8 −2 · 10−11 −0.990854 −3.766007 −7.089004 −756.9

16 7 · 10−11 −0.996405 −3.971027 −8.803476 −2417.

32 6 · 10−10 −0.998047 −3.991243 −8.971213 −8153.

3 Mixed boundary conditions for the teeth

Let us explore mixed boundary conditions at the edges of the teeth: suppose
the microsimulator requires avj ± b∂xvj specified on the edge of the teeth
x = xj ± rH for some constants a and b. The case a = 1 and b = 0

constitutes Dirichlet tbcs discussed in the previous section. The case a = 0

and b = 1 constitutes Neumann tbcs as discussed by Roberts & Kevrekidis
(2005): there we used the interpolation formula (6) to specify slopes/fluxes
on the edge of each tooth; we obtained spectra of accuracy similar to those
in Tables 1 and 2.

For mixed tbcs we propose to simply combine (6) and (7) to give, for
example, the fourth order in macroscopic grid size H = 2π/m boundary
condition

avj ± b∂xvj

= a
[

1 ± rµδ + 1
2
r2δ2 ± 1

6
r(r2 − 1)µδ3 + 1

24
r2(r2 − 1)δ4

]

Uj

±
b

H

[

µδ ± rδ2 − (1
6

− 1
2
r2)µδ3 ∓ r( 1

12
− 1

6
r2)δ4

]

Uj

on x = xj ± rH . (10)

We use a = 0.95 and b = 0.05 in the mixed tbc: this gives a mixed boundary
condition where the effects of the function value vj and its gradient ∂xvj are
roughly comparable in the tbc (if the parameter b is significantly larger, then
the gradient term dominates the tbc). The numerical eigenvalues given in
Table 3 for the diffusion equation (8) with these tbcs again show convergence
to the correct eigenvalues as the number of teeth increases, that is, as the
macroscopic grid size H → 0 . However, the convergence is not as rapid as
for Dirichlet tbcs. The poorer convergence as H → 0 seems to be due to
the microscopic grid resolution: successive doubling of the number of interior
points, see Table 4, demonstrates that there are significant errors of O

(

η2
)
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4 Teeth with two point boundary conditions 11

Table 4: Growth rates λ of perturbations from steady state u = 0 : for
diffusion (8) with m = 8 teeth; with gap to tooth ratio r = 0.1 ; n points
in the microscale grid to show variation with microscale resolution; and with
the mixed tbc (10) with a = 0.95 and b = 0.05 .

n 1 2,3 4,5 6,7
11 −2 · 10−11 −0.990854 −3.766007 −7.089004

21 1 · 10−10 −0.994896 −3.781289 −7.117588

41 −3 · 10−10 −0.995792 −3.784677 −7.123924

in the microscale grid size η. Thus the total error in this implementation of
the mixed tbcs seems to be O

(

H4, η2
)

.
Here the microscale simulation is that of a fine discretisation of a pde.

Thus the derivatives in the mixed tbc (10) are subject to the significant
errors of numerical differentiation when computed on the microscale. As Ta-
ble 4 shows, the approximation of derivatives does incur errors; we would
be better off without such errors. Higher order formulae for microscale in-
terpolation would reduce the microscale errors in the boundary derivatives,
perhaps from O

(

η2
)

to O
(

η4
)

, but would ruin the small bandwidth of the
microscale simulator. In any case, recall that we adopt the policy that we
cannot change the microscale simulator as it is a legacy code handed to us
from past development. We cannot (do not want to) change the nature nor
accuracy of its boundary conditions. Consequently we proceed to address the
problem of supplying boundary conditions at the edge of the teeth, precisely
as required during execution of the legacy microscale simulator.

4 Teeth with two point boundary conditions

A microscale simulator may have implemented boundary conditions that do
not fit into the classic partial differential equation form of Dirichlet, Neumann
nor mixed. Here the microscale simulator implements a discretisation of
3 point stencil width. Consequently the simulator has been written so that
the supplied boundary conditions only depend upon each of the two extreme
pairs of points in each tooth. We thus investigate teeth boundary conditions
that specify a combination of these two point values of the field at the edge
of each tooth. This specific case is just one example of the wide range of
possible nonlocal tbcs that specific microsimulators may require.

Suppose the microsimulator, here a fine spatial discretisation of the dif-
fusion pde (8), implements a tooth boundary condition of the (linear) form
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4 Teeth with two point boundary conditions 12

Table 5: Growth rates λ of perturbations from steady state u = 0 : for
diffusion (8) with m = 8 teeth; with gap to tooth ratio r = 0.1 ; n points in
the microscale grid to show variation with microscale resolution η ∝ 1/n ;
and with the fourth order general tbc (12) with β = 1 .

n 1 2,3 4,5 6,7
11 1 · 10−10 −0.999741 −3.984137 −8.831209

21 −3 · 10−10 −0.999742 −3.984159 −8.831368

41 1 · 10−9 −0.999742 −3.984169 −8.831453

vj,1 + βvj,2 and βvj,n−1 + vj,n are specified, (11)

where vj,i denotes the microscale field value at the ith microscale grid point in
the jth tooth. For example, the case β = 1 approximates Dirichlet boundary
conditions at the microscale grid mid-points xj,3/2 and xj,n−1/2 near the edges
of each tooth, which is exactly the case a = 0 and b = 1 implemented in the
previous Section 3. Different values of β would approximate different mixed
boundary conditions of the previous section.

The procedure is straightforward: we interpolate the macroscale grid val-
ues to find the specific values required by the boundary conditions (11).
Recall that (9) gives a fourth order interpolation from the macroscale grid
to points at the tooth boundaries x = Xj± rH ; this gives appropriate values
for vj,1 and vj,n. Get appropriate values for vj,2 and vj,n−1 through sim-
ply replacing in the formula the ratio r = h/(2H) by the ratio required to
reach the penultimate microgrid point, namely r ′ = (h/2 − η)/H, where
η = h/(n − 1) is the microgrid size. Thus the fourth order version of the
boundary condition (11) is that at x = Xj ± rH

(1 + βE∓η/H)vj

=
[

1 ± rµδ + 1
2
r2δ2 ± 1

6
r(r2 − 1)µδ3 + 1

24
r2(r2 − 1)δ4

]

Uj (12)

+ β
[

1 ± r ′µδ + 1
2
r ′2δ2 ± 1

6
r ′(r ′2 − 1)µδ3 + 1

24
r ′2(r ′2 − 1)δ4

]

Uj .

Implementing the tbc (12) for the diffusion equation (8) gives a numerical
approximation scheme with eigenvalues shown in Table 5 for varying mi-
crogrid resolution. See that there is only an extremely weak dependence
upon the microgrid size η. Thus implementing directly the boundary condi-
tions that the microscale simulator actually expects during execution results
in much better accuracy than trying to approximate the microscale tbcs us-
ing computed spatial derivatives.
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5 The model is independent of the tooth boundary conditions 13

Table 6: Growth rates λ of perturbations from steady state u = 0 : for
diffusion (8) with m teeth, H = 2π/m ; with gap to tooth ratio r = 0.1 ;
n = 11 points in the microscale grid; and with the fourth order general
tbc (12) with β = 1 .

m 1 2,3 4,5 6,7 m + 1 : 2m

4 −8 · 10−12 −0.946069 −2.165068 n/a −489.5

8 4 · 10−11 −0.996034 −3.784277 −7.118312 −1958.

16 1 · 10−10 −0.999741 −3.984137 −8.831209 −7832.

32 8 · 10−10 −0.999983 −3.998964 −8.988427 −31329.

Lastly, Table 6 shows the eigenvalues of the gap-tooth scheme for varying
number m of teeth in the domain. See that the eigenvalues converge to their
correct values like O

(

H4
)

as expected by the construction.
Higher order tbcs, in the macroscopic grid size H, would similarly be

based upon the expansion (7). We then expect even more rapid convergence
as the macroscale grid size H → 0 .

5 The model is independent of the tooth bound-

ary conditions

Here we use analytic methods of holistic discretisation (Roberts 2001b, e.g.)
to explore the gap-tooth scheme on a general class of pdes with general mixed
boundary conditions. The analysis establishes three important properties:

• the approach generates macroscopic models which are consistent with
the microscopic dynamics to high orders in grid spacing H;

• the macroscopic model and the microscopic solution field are essentially
independent of the size of the teeth, as parametrised by r; and

• the macroscopic model and the microscopic solution field are essentially
independent of the details of the tbcs.

5.1 Theory underpins analysis of a PDE with tooth
boundary conditions

We explore solutions of the class of linear hyper-advection-diffusion pdes

∂u

∂t
=

∂2u

∂x2
− ǫ

(

c
∂u

∂x
+ b

∂3u

∂x3
+ a

∂4u

∂x4

)

, (13)
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5 The model is independent of the tooth boundary conditions 14

where a, b and c are arbitrary parameters, and where ǫ is introduced as a
convenient mechanism to control truncation in the multivariate power series
solutions in the parameters a, b and c. This pde is solved with mixed tooth
boundary conditions inspired by (10), namely that on x = xj ± rH , and in
terms of an artificial parameter γ that we explain shortly,

±αvj + ∂xvj

= ±α
{
1 + γr

[

±µδ + 1
2
rδ2

]

+ γ21
6
r(r2 − 1)

[

±µδ3 + 1
4
rδ4

]

+ γ3 1
120

r(r2 − 1)(r2 − 4)
[

±µδ5 + 1
6
rδ6

]}
Uj

+
1

H

{
γ

[

µδ ± rδ2
]

+ γ2
[

−(1
6

− 1
2
r2)µδ3 ∓ r( 1

12
− 1

6
r2)δ4

]

+ γ3
[

( 1
30

− 1
8
r2 + 1

24
r4)µδ5 ± r( 1

90
− 1

36
r2 + 1

120
r4)δ6

]}
Uj

+O
(

γ4
)

. (14)

Explore the structure of this complicated looking tbc: ±αvj+∂xvj represents
a general linear combination of the microscopic field at the edge of each tooth
that needs to be specified for the microscopic simulator; those terms in the
right-hand side multiplied by ±α form the estimate of the field vj interpolated
from the surrounding macroscopic grid values; those terms in the right-hand
side multiplied by 1/H form the estimate of the field’s gradient ∂xvj inter-
polated from the surrounding macroscopic grid values. However, these two
interpolations only hold when the artificial parameter γ = 1 ; one is the phys-
ically interesting value of γ. Why then do we introduce the parameter γ?
The reason is that, as in “discretisation” (Roberts 2001a), based around the
special values of the parameters γ = α = ǫ = 0 , the general pde (13) with
tbc (14) possesses a (slow) centre manifold parametrised by the macroscopic
grid values. On this centre manifold the evolution of these macroscopic grid
values forms a macroscale model of the pde. This model has rigorous theo-
retical support based upon γ = 0 , and it becomes physically relevant when
evaluated at γ = 1.

We briefly explain how centre manifold theory underpins the macroscale
model. Initially set γ = α = ǫ = 0; then the pde+tbc become the diffusion
equation with insulating boundaries at the edges of the teeth, x = xj ± rH .
Thus, exponentially quickly, all structure within each tooth diffuses away to
become constant, but a different constant for each tooth depending upon
the initial conditions. See a similar evolution in Figures 2 and 3; but there
the teeth are coupled, so that the rapid evolution is to a smooth variation
in each tooth, whereas here the insulated evolution, γ = α = ǫ = 0 , is to
a constant in each tooth. But we are only interested in fully coupled teeth
for which γ = 1 , and in non-zero α and ǫ. Thus from the simple base of
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5 The model is independent of the tooth boundary conditions 15

piecewise constant fields, we construct a description of the field u and its slow
evolution as a power series in the “perturbations” measured by γ, α and ǫ.
The departure of the field u from a constant within each tooth gives the
microscopic (subgrid, subtooth) field, as shown for example in the smooth
fields of Figures 2 and 3 that are quickly established. The slow evolution of
the coarse grid values Uj gives the macroscopic model.

The various powers of γ in the tbc (14) are chosen so that trunca-
tion of the expressions to errors O

(

γp
)

will generate a discrete macroscopic

model expressing U̇j in terms of only Uj−p+1, . . . , Uj+p−1 (a spatial stencil of
width 2p − 1). Centre manifold theory (Carr 1981, Kuznetsov 1995, e.g.)
asserts that

• such a model exists,

• that through its exponential attractiveness, the model is relevant in
some finite neighbourhood of γ = α = ǫ = 0 ,

• and that we may systematically construct the power series approxima-
tion to the model.

Because truncation to errors O
(

γp
)

results in a model with stencil width 2p−

1, such a truncation corresponds to the gap-tooth scheme utilising tbcs in-
volving interpolation from only the 2p−1 neighbouring grid values Uj−p+1, . . . , Uj+p−1.

Computer algebra1 performs all the tedious details of constructing the
model (Roberts 1997). We seek a model where the subtooth/subgrid field

u(x, t) = vj(x, U; α, γ, ǫ) . (15)

That is, the subtooth field has some spatial structure, such as that in Figures
2 and 3, which: depends upon the neighbouring grid values Uj−p+1, . . . , Uj+p−1 ;
may depend upon the specific tbc through its parameter α; depends upon
the specific pde though its parameter ǫ; and depends upon the coupling
parameter γ. Centre manifold theory assures us the evolution of the system
is governed by the evolution of the grid values:

U̇j = gj(U; α, γ, ǫ) ; (16)

this formula is the macroscopic (closed) discretisation. We solve by iteration
the pde (13) with tbc (14) to find the centre manifold (15) and its associated
coarse discretisation (16). The results are expressions for the microscopic
fields vj and the macroscopic evolution, U̇j = gj , that are accurate to some
specified order in the small parameters α, γ and ǫ.

1http://www.sci.usq.edu.au/staff/aroberts/CA/burgermixed.red is the source

script which was available at the time of writing.
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5 The model is independent of the tooth boundary conditions 16

5.2 Modelling O
(

ǫ
)

changes to the PDE

The subgrid fields in each tooth will in general depend upon the coefficients
a, b and c that determine the pde. For example, there are nontrivial depen-
dencies upon the advection speed that ensure the macroscale model naturally
transforms to an upwind discretisation for large advection speeds c (Roberts
2002)—such influences show up in the O

(

ǫ2
)

terms that we explore in the
next subsection. Here we first explore the models linear in a, b and c, that
is, linear in the general changes to the pde (13) with the tbc (14).

For example, to errors O
(

α3, γ4, ǫ2
)

, computer algebra generates the
macroscopic evolution

U̇j =
1

H2

[

γδ2 − 1
12

γ2δ4 + 1
90

γ3δ6
]

Uj

−
ǫc

H

[

γµδ − 1
6
γ2µδ3 + 1

30
γ3µδ5

]

Uj

−
ǫb

H3

[

γ2µδ3 − 1
4
γ3µδ5

]

Uj

−
ǫa

H4

[

γ2δ4 − 1
6
γ3δ6

]

Uj + O
(

α3, γ4, ǫ2
)

. (17)

When evaluated at the physically relevant parameter γ = 1 these are the
classical finite difference operators for the pde (13), truncated to O

(

δ7
)

.
Consequently the terms in the macroscopic model (17) are consistent with
the pde (13) to various orders in the macroscopic grid size H. The order of
consistency depends upon the order of truncation in the artificial coupling
parameter γ and the order of the derivatives in each term. Observe that the
macroscopic evolution operator is independent of r, the size of the teeth, and
independent of α which parametrises the precise nature of the tbc (14).

Now we explore the microscopic field within the teeth. To low order in the
coupling parameter γ and in terms of the microscopic tooth space variable
ξ = (x − Xj)/H , we find

vj = Uj + γ
{[

ξµδ + 1
2
ξ2δ2

]

+ ǫcH
[

(1
6
ξ3 − 1

2
r2ξ) + 1

3
Hαr3ξ − 1

3
H2α2r4ξ

]

δ2
}

Uj

+ O
(

α3, γ2, ǫ2
)

. (18)

The first line gives the classic quadratic interpolation through the grid val-
ues Uj and Uj±1. The second line shows microscopic field structure in the
advection speed c. But it exhibits undesirable dependence upon the tooth
width r and nature α of the tbc. However, inspect the next order terms in
coupling parameter γ:

vj = · · ·+ γ2
{[

1
6
(−ξ + ξ3)µδ3 + 1

24
(−ξ2 + ξ4)δ4

]
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+ ǫcH
[

−(1
6
ξ3 − 1

2
r2ξ) − 1

3
Hαr3ξ + 1

3
H2α2r4ξ

]

δ2

+ (− 1
18

ξ3 + 1
60

ξ5 + 1
6
r2ξ − 1

12
r2ξ31

6
r4ξ)δ4

+ αH(−1
9
r3ξ + 1

18
r3ξ3 − 4

15
r5ξ)δ4

+ α2H2(1
9
r4ξ − 1

18
r4ξ3 + 17

45
r6ξ)δ4

+
ǫb

H

[

−(1
6
ξ3 − 1

2
r2ξ) − 1

3
Hαr3ξ + 1

3
H2α2r4ξ

]

δ4

}

Uj

+ O
(

α3, γ3, ǫ2
)

; (19)

The dots denote the terms given in the right-hand side of (18). The first
line in the above higher order terms contains reassuringly the classic quartic
interpolation formulae. The second line, when we set γ = 1 , cancels all
the undesirable α and r dependence in the lower order (18). The third
and later lines above describe higher order microscopic structure; some of
this undesirably depends upon the tbc through α and the size of the teeth
through r, but as far as we have explored, any α and r dependence introduced
at any order in γ is canceled by terms at higher orders in γ. Thus any finite
truncation of the power series expansion for the model may have undesirable
dependence upon α and r, but as the order in the artificial parameter γ is
increased, this dependence is removed. In this sense, the microscopic field is
“essentially” independent of the details of the tbc and independent of the
tooth width r.

5.3 Modelling O
(

ǫ2
)

effects in the PDE

In our analysis we find that even order operators in the microscale pde,
such as the diffusion uxx and the hyper-diffusion auxxxx, are represented
simply in the macroscale discretisation. However, odd order operators in
the microscale pde, such as advection cux and the dispersion buxxx, create
nontrivial effects; these first show up in terms quadratic in their amplitude
and hence they first appear in terms of O

(

ǫ2
)

. We now show that the
effects of O

(

ǫ2
)

terms typically act to stabilise the O
(

ǫ
)

discrete model. The
implication for the gap-tooth method is that the resolution of the subgrid
structures by the microscale simulator will also typically maintain stability of
the discrete macroscale model. That is, the microscale simulator will provide
successful closure for the macroscale discretisation when coupled with the
proposed tbcs.

To illustrate this, we can construct the approximate model of the pde (13)
with tbc (14) to errors O

(

α2, γ4, ǫ3
)

; that is, we include quadratic effects in
the coefficients a, b and c. The details of the model are too long to record
here. However, we find that the equivalent pde to the macroscale discrete
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model (17) with its O
(

ǫ2
)

modifications is

∂u

∂t
= γ

∂2u

∂x2
− ǫ

[

γc
∂u

∂x
+ γ2b

∂3u

∂x3
+ γ2a

∂4u

∂x4

]

+ ǫ2

[

−(γ − γ2)bc
∂2u

∂x2
− (γ2 − γ3)b2∂4u

∂x4

]

+ H2

{
1
12

(γ − γ2)
∂4u

∂x4

+ ǫ

[

−1
6
(γ − γ2)c

∂3u

∂x3
− 1

4
(γ2 − γ3)b

∂5u

∂x5
− 1

6
(γ2 − γ3)a

∂6u

∂x6

]

+ ǫ2

[

+1
3
(γ − γ2)c2r2∂2u

∂x2
− 1

12
(γ − 5γ2 + 4γ3)bc

∂4u

∂x4

+ 2
3
(γ2 − γ3)bcr2∂4u

∂x4
− 1

6
(γ2 − 7γ3 + 4γ3r2)b2∂6u

∂x6

]}

+ O
(

H3, α2, γ4, ǫ3
)

. (20)

Observe that to this level of accuracy there is no dependence upon the tbc

parameter α, thus our comments apply for all the tbcs. Now consider the
components of (20) in turn. The first line of (20) is the original general linear
pde (13) when evaluated at the physically meaningful γ = 1 . The second
line shows some error terms, quadratic in ǫ, that disappear for γ = 1 . The
bcuxx error disappears when O

(

γ2
)

terms are retained, which is as soon as
the discretisation stencil is wide enough to model the third order dispersion
term buxxx. The b2uxxxx dispersion-induced term shows that the method
initially incorporates its effects as enhanced dissipation, as the coefficient
of γ2 is negative; then, when higher order accuracy is requested by retaining
O

(

γ3
)

terms, the method proceeds to remove the incurred error via the
γ3 term.

Consider applying these tbc to a microscale simulator; for slow enough
spatial variations, the microsimulator is equivalent to some ‘infinite order’
pde. For example, the microscale discretisation u̇i = (1/η2)δ2ui is, by (4),
equivalent to the pde ut = (4/η2) sinh2(η∂x/2)u . We expect the behaviour
of errors in the gap-tooth scheme seen here, induced by the uxxx and uxxxx

terms, be representative of the behaviour of errors in the ‘high order’ equiv-
alent terms of any given microscopic simulator.

The remaining terms in (20) are O
(

H2
)

and hence vanish as the macro-
scopic grid size H → 0 . Nonetheless look at the H2 terms in the third to sixth
lines as they apply to simulations with finite H. The third and fourth lines
show that the initial discretisation errors of the linear terms are eliminated,
for the physical γ = 1 , via the next higher order in coupling parameter γ.
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The particular focus of this subsection is the ǫ2 terms on the next two lines.
The c2uxx terms show that at low order truncations in γ the method treats
advection in a manner that increases dissipation, as the coefficient is posi-
tive, and thus helps to maintain the stability of the macroscale discretisation
to high advection speeds c (explored in Roberts 2001a, 2002). The interac-
tion between advection cux and dispersion buxxx can maintain stability or
be destabilising depending upon the sign of bc: whether we truncate at γ

when −bcuxx dominates (second line) or we truncate at γ2 when bcuxxxx

dominates (fifth and sixth lines), the combination is stabilising whenever
bc < 0 , that is, when the phase velocity of wave-like effects does not change
direction as a function of wavenumber. The last term on the sixth line will
be dominated by the dissipative b2uxxxx term on the second line, and we
presume will vanish at higher orders in the coupling parameter γ. Thus,
from the equivalent pde (20) of the macroscale model, we deduce that the
subgrid scale interactions between processes in the pde, and hence for mi-
croscale simulators in general, are accounted for in this approach to generate
a macroscale model that is typically stable.

Indeed this equivalent pde (20) confirms support for the gap-tooth scheme
with tbc by centre manifold theory. Theory asserts that the original system,
here the pde (20), and the centre manifold model, here the macroscale dis-
cretisation (16), have the same stability. Thus when the microscale system is
stable, so will the macroscale discretization. The caveat is that we can only
construct the centre manifold approximately; we control the errors to some
order in the parameters α γ and ǫ, but there will be some error, albeit of
high order in the parameters.

6 Conclusion

We use macroscale interpolation based upon the expansions (6) and (7) to
determine tbcs for the boundary conditions at the edge of the teeth in the
gap-tooth scheme. The interpolation was used to implement directly what-
ever boundary conditions are actually needed by the microscale legacy code
during execution. Figure 4 shows a simulation of the nonlinear Burgers’
equation with 2 point boundary conditions at the boundaries of each tooth
as an illustrative example. We found that the macroscopic models resulting
from the microsimulator and the constructed tbc were consistent, to high
order, with the microscopic dynamics; that the macroscopic models and the
microscopic (subgrid, subtooth) fields were essentially independent of the
tooth size and the detailed nature of the tbc. We expect the same type of
tbc to be effective for microsimulations in more than one spatial dimension.
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Figure 4: simulation of Burgers’ equation using general 2-point boundary
condition on the teeth of the fourth order (12) with β = 1 demonstrates the
method is stable even for nonlinear pdes.

Interesting future research would seek tbc that do not require communica-
tion across the gaps between the teeth at each and every microscale time
step, and the interplay of tbcwith implicit integration schemes.

Further exciting research would explore issues of existence and perfor-
mance of tbcs for stochastic microsimulators.
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