849 research outputs found

    Ensemble clustering for result diversification

    Get PDF
    This paper describes the participation of the University of Twente in the Web track of TREC 2012. Our baseline approach uses the Mirex toolkit, an open source tool that sequantially scans all the documents. For result diversification, we experimented with improving the quality of clusters through ensemble clustering. We combined clusters obtained by different clustering methods (such as LDA and K-means) and clusters obtained by using different types of data (such as document text and anchor text). Our two-layer ensemble run performed better than the LDA based diversification and also better than a non-diversification run

    Ultra-Scalable Spectral Clustering and Ensemble Clustering

    Full text link
    This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited resources. Two novel algorithms are proposed, namely, ultra-scalable spectral clustering (U-SPEC) and ultra-scalable ensemble clustering (U-SENC). In U-SPEC, a hybrid representative selection strategy and a fast approximation method for K-nearest representatives are proposed for the construction of a sparse affinity sub-matrix. By interpreting the sparse sub-matrix as a bipartite graph, the transfer cut is then utilized to efficiently partition the graph and obtain the clustering result. In U-SENC, multiple U-SPEC clusterers are further integrated into an ensemble clustering framework to enhance the robustness of U-SPEC while maintaining high efficiency. Based on the ensemble generation via multiple U-SEPC's, a new bipartite graph is constructed between objects and base clusters and then efficiently partitioned to achieve the consensus clustering result. It is noteworthy that both U-SPEC and U-SENC have nearly linear time and space complexity, and are capable of robustly and efficiently partitioning ten-million-level nonlinearly-separable datasets on a PC with 64GB memory. Experiments on various large-scale datasets have demonstrated the scalability and robustness of our algorithms. The MATLAB code and experimental data are available at https://www.researchgate.net/publication/330760669.Comment: To appear in IEEE Transactions on Knowledge and Data Engineering, 201

    Ensemble clustering via heuristic optimisation

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and was awarded by Brunel UniversityTraditional clustering algorithms have different criteria and biases, and there is no single algorithm that can be the best solution for a wide range of data sets. This problem often presents a significant obstacle to analysts in revealing meaningful information buried among the huge amount of data. Ensemble Clustering has been proposed as a way to avoid the biases and improve the accuracy of clustering. The difficulty in developing Ensemble Clustering methods is to combine external information (provided by input clusterings) with internal information (i.e. characteristics of given data) effectively to improve the accuracy of clustering. The work presented in this thesis focuses on enhancing the clustering accuracy of Ensemble Clustering by employing heuristic optimisation techniques to achieve a robust combination of relevant information during the consensus clustering stage. Two novel heuristic optimisation-based Ensemble Clustering methods, Multi-Optimisation Consensus Clustering (MOCC) and K-Ants Consensus Clustering (KACC), are developed and introduced in this thesis. These methods utilise two heuristic optimisation algorithms (Simulated Annealing and Ant Colony Optimisation) for their Ensemble Clustering frameworks, and have been proved to outperform other methods in the area. The extensive experimental results, together with a detailed analysis, will be presented in this thesis

    Microbial community pattern detection in human body habitats via ensemble clustering framework

    Full text link
    The human habitat is a host where microbial species evolve, function, and continue to evolve. Elucidating how microbial communities respond to human habitats is a fundamental and critical task, as establishing baselines of human microbiome is essential in understanding its role in human disease and health. However, current studies usually overlook a complex and interconnected landscape of human microbiome and limit the ability in particular body habitats with learning models of specific criterion. Therefore, these methods could not capture the real-world underlying microbial patterns effectively. To obtain a comprehensive view, we propose a novel ensemble clustering framework to mine the structure of microbial community pattern on large-scale metagenomic data. Particularly, we first build a microbial similarity network via integrating 1920 metagenomic samples from three body habitats of healthy adults. Then a novel symmetric Nonnegative Matrix Factorization (NMF) based ensemble model is proposed and applied onto the network to detect clustering pattern. Extensive experiments are conducted to evaluate the effectiveness of our model on deriving microbial community with respect to body habitat and host gender. From clustering results, we observed that body habitat exhibits a strong bound but non-unique microbial structural patterns. Meanwhile, human microbiome reveals different degree of structural variations over body habitat and host gender. In summary, our ensemble clustering framework could efficiently explore integrated clustering results to accurately identify microbial communities, and provide a comprehensive view for a set of microbial communities. Such trends depict an integrated biography of microbial communities, which offer a new insight towards uncovering pathogenic model of human microbiome.Comment: BMC Systems Biology 201

    An algebraic approach to ensemble clustering

    Get PDF
    International audienceIn clustering, consensus clustering aims at providing a single partition fitting a consensus from a set of independently generated. Common procedures, which are mainly statistical and graph-based, are recognized for their robustness and ability to scale-up. In this paper, we provide a complementary and original viewpoint over consensus clustering, by means of algebraic definitions which allow to ascertain the nature of available inferences in a systematic approach (e.g. a knowledge base). We found our approach on the lattice of partitions, for which we shall disclose how some operators can be added with the aim to express a formula representing the consensus. We show that adopting an incremental approach may assist to retain significant amount of aggregate data which fits well with the set of input clusterings. Beyond that ability to model formulae, we also note that its potential cannot be easily captured through such a logical system. It is due to the volatile nature of handling partitions which finally impacts on ability to draw some valuable conclusions
    corecore