243,729 research outputs found
Protocol for Metatranscriptomic analysis of Intestinal Microbiota
The objective of this publication is to provide the detailed protocol for metartancriptomisc studies of animal intestinal microbiota. The protocol describes isolation of high quality microbial community RNA from the mammalian intestinal content, subsequent mRNA enrichment, cDNA synthesis and sequencing. Twelve libraries were prepared, pooled in equimolar concentrations into a single library and sequenced on one GS Titanium 70×75 picotiter plate, following this protocol. The total number of reads obtained for 12 libraries was 1,155,062 (average 96,000 per library) and the combined size of 12 libraries was 521 million bases (average 43 million bases per library). The reported size of non-ribosomal RNA library fraction is ~15%, the fraction of non-ribosomal reads is ~17%. Hence we described a robust technique for metranscriptomic studies of animal intestinal microbiota. The double stranded cDNAs, prepared following this protocol, are suitable for pyrosequencing (454, Illumina), clone library construction or could be used to archive and store metaranscriptomic samples
Structural and functional glycosphingolipidomics by glycoblotting with aminooxy-functionalized gold nanoparticle
Glycosphingolipids (GSLs) synthesized in Golgi apparatus by sequential transfer of sugar residues to a ceramide lipid anchor are ubiquitously distributing on vertebrate plasma membranes. Standardized method allowing for high throughput structural profiling and functional characterization of living cell surface GSLs is of growing importance because they function as crucial signal transduction molecules in various processes of dynamic cellular recognitions. However, methods are not available for amplification of GSLs, while the genomic scale PCR amplification permits large-scale mammalian proteomic analysis. Here we communicate such an approach to a novel "omics", namely glycosphingolipidomics based on the glycoblotting method. The method, which involves selective ozonolysis of the C-C double bond in ceramide moiety and subsequent enrichment of generated GSL-aldehydes by chemical ligation using aminooxy-functionalized gold nanoparticle (aoGNP) should be of widespread utility for identifying and characterizing whole GSLs present in the living cell surfaces. The present protocol using glycoblotting permitted MALDI-TOFMS-based high throughput structural profiling of mouse brain gangliosides such as GM1, GD1a/GD1b, and GT1b for adult or GD3 in case for embryonic mouse. When mouse melanoma B16 cells were subjected to this protocol, it was demonstrated that gangliosides enriched from the plasma membranes are only GM3 bearing microheteogeneity in the structure of N-acyl chain. Surface plasmon resonance analysis revealed that aoGNP displaying whole GSLs blotted from mouse B16 melanoma cell surfaces can be used directly for monitoring specific interaction with self-assembled monolayer (SAM) of Gg3Cer (gangliotriaosylceramide). Our results indicate that GSL-selective enrichment onto aoGNP from living cell surfaces allows for rapid reconstruction of plasma membrane models mimicking intact GSL-microdomain feasible for further structural and functional characterization
Recommended from our members
Systematic alteration of ATAC-seq for profiling open chromatin in cryopreserved nuclei preparations from livestock tissues.
The use of Assay for Transposase-Accessible Chromatin (ATAC-seq) to profile chromatin accessibility has surged over the past years, but its applicability to tissues has been very limited. With the intent of preserving nuclear architecture during long-term storage, cryopreserved nuclei preparations from chicken lung were used to optimize ATAC-seq. Sequencing data were compared with existing DNase-seq, ChIP-seq, and RNA-seq data to evaluate library quality, ultimately resulting in a modified ATAC-seq method capable of generating high quality chromatin accessibility data from cryopreserved nuclei preparations. Using this method, nucleosome-free regions (NFR) identified in chicken lung overlapped half of DNase-I hypersensitive sites, coincided with active histone modifications, and specifically marked actively expressed genes. Notably, sequencing only the subnucleosomal fraction dramatically improved signal, while separation of subnucleosomal reads post-sequencing did not improve signal or peak calling. The broader applicability of this modified ATAC-seq technique was tested using cryopreserved nuclei preparations from pig tissues, resulting in NFR that were highly consistent among biological replicates. Furthermore, tissue-specific NFR were enriched for binding motifs of transcription factors related to tissue-specific functions, and marked genes functionally enriched for tissue-specific processes. Overall, these results provide insights into the optimization of ATAC-seq and a platform for profiling open chromatin in animal tissues
Baseline characteristics and enrichment results from the SONAR trial
Aim:
The SONAR trial uses an enrichment design based on the individual response to the selective endothelin receptor antagonist atrasentan on efficacy (the degree of the individual response in the urinary albumin‐to‐creatinine ratio [UACR]) and safety/tolerability (signs of sodium retention and acute increases in serum creatinine) to assess the effects of this agent on major renal outcomes. The patient population and enrichment results are described here.
Methods:
Patients with type 2 diabetes with an estimated glomerular filtration rate (eGFR) within 25 to 75 mL/min/1.73 m2 and UACR between 300 and 5000 mg/g were enrolled. After a run‐in period, eligible patients received 0.75 mg/d of atrasentan for 6 weeks. A total of 2648 responder patients in whom UACR decreased by ≥30% compared to baseline were enrolled, as were 1020 non‐responders with a UACR decrease of <30%. Patients who experienced a weight gain of >3 kg and in whom brain natriuretic peptide exceeded ≥300 pg/mL, or who experienced an increase in serum creatinine >20% (0.5 mg/dL), were not randomized.
Results:
Baseline characteristics were similar for atrasentan responders and non‐responders. Upon entry to the study, median UACR was 802 mg/g in responders and 920 mg/g in non‐responders. After 6 weeks of treatment with atrasentan, the UACR change in responders was −48.8% (95% CI, −49.8% to −47.9%) and in non‐responders was −1.2% (95% CI, −6.4% to 3.9%). Changes in other renal risk markers were similar between responders and non‐responders except for a marginally greater reduction in systolic blood pressure and eGFR in responders.
Conclusions:
The enrichment period has successfully identified a population with a profound UACR reduction without clinical signs of sodium retention in whom a large atrasentan effect on clinically important renal outcomes is possible. The SONAR trial aims to establish whether atrasentan confers renal protection
Neurogenesis Drives Stimulus Decorrelation in a Model of the Olfactory Bulb
The reshaping and decorrelation of similar activity patterns by neuronal
networks can enhance their discriminability, storage, and retrieval. How can
such networks learn to decorrelate new complex patterns, as they arise in the
olfactory system? Using a computational network model for the dominant neural
populations of the olfactory bulb we show that fundamental aspects of the adult
neurogenesis observed in the olfactory bulb -- the persistent addition of new
inhibitory granule cells to the network, their activity-dependent survival, and
the reciprocal character of their synapses with the principal mitral cells --
are sufficient to restructure the network and to alter its encoding of odor
stimuli adaptively so as to reduce the correlations between the bulbar
representations of similar stimuli. The decorrelation is quite robust with
respect to various types of perturbations of the reciprocity. The model
parsimoniously captures the experimentally observed role of neurogenesis in
perceptual learning and the enhanced response of young granule cells to novel
stimuli. Moreover, it makes specific predictions for the type of odor
enrichment that should be effective in enhancing the ability of animals to
discriminate similar odor mixtures
Gain of 20q11.21 in human pluripotent stem cells impairs TGF-β-dependent neuroectodermal commitment
Gain of 20q11.21 is one of the most common recurrent genomic aberrations in human pluripotent stem cells. Although it is known that overexpression of the antiapoptotic gene Bcl-xL confers a survival advantage to the abnormal cells, their differentiation capacity has not been fully investigated. RNA sequencing of mutant and control hESC lines, and a line transgenically overexpressing Bcl-xL, shows that overexpression of Bcl-xL is sufficient to cause most transcriptional changes induced by the gain of 20q11.21. Moreover, the differentially expressed genes in mutant and Bcl-xL overexpressing lines are enriched for genes involved in TGF-beta- and SMAD-mediated signaling, and neuron differentiation. Finally, we show that this altered signaling has a dramatic negative effect on neuroectodermal differentiation, while the cells maintain their ability to differentiate to mesendoderm derivatives. These findings stress the importance of thorough genetic testing of the lines before their use in research or the clinic
Transcriptomic signatures of neuronal differentiation and their association with risk genes for autism spectrum and related neuropsychiatric disorders.
Genes for autism spectrum disorders (ASDs) are also implicated in fragile X syndrome (FXS), intellectual disabilities (ID) or schizophrenia (SCZ), and converge on neuronal function and differentiation. The SH-SY5Y neuroblastoma cell line, the most widely used system to study neurodevelopment, is currently discussed for its applicability to model cortical development. We implemented an optimal neuronal differentiation protocol of this system and evaluated neurodevelopment at the transcriptomic level using the CoNTeXT framework, a machine-learning algorithm based on human post-mortem brain data estimating developmental stage and regional identity of transcriptomic signatures. Our improved model in contrast to currently used SH-SY5Y models does capture early neurodevelopmental processes with high fidelity. We applied regression modelling, dynamic time warping analysis, parallel independent component analysis and weighted gene co-expression network analysis to identify activated gene sets and networks. Finally, we tested and compared these sets for enrichment of risk genes for neuropsychiatric disorders. We confirm a significant overlap of genes implicated in ASD with FXS, ID and SCZ. However, counterintuitive to this observation, we report that risk genes affect pathways specific for each disorder during early neurodevelopment. Genes implicated in ASD, ID, FXS and SCZ were enriched among the positive regulators, but only ID-implicated genes were also negative regulators of neuronal differentiation. ASD and ID genes were involved in dendritic branching modules, but only ASD risk genes were implicated in histone modification or axonal guidance. Only ID genes were over-represented among cell cycle modules. We conclude that the underlying signatures are disorder-specific and that the shared genetic architecture results in overlaps across disorders such as ID in ASD. Thus, adding developmental network context to genetic analyses will aid differentiating the pathophysiology of neuropsychiatric disorders
- …
