111,786 research outputs found

    Drying of complex suspensions

    Full text link
    We investigate the 3D structure and drying dynamics of complex mixtures of emulsion droplets and colloidal particles, using confocal microscopy. Air invades and rapidly collapses large emulsion droplets, forcing their contents into the surrounding porous particle pack at a rate proportional to the square of the droplet radius. By contrast, small droplets do not collapse, but remain intact and are merely deformed. A simple model coupling the Laplace pressure to Darcy's law correctly estimates both the threshold radius separating these two behaviors, and the rate of large-droplet evacuation. Finally, we use these systems to make novel hierarchical structures.Comment: 4 pages, 4 figure

    Formulation development and microstructure analysis of a polymer modified bitumen emulsion road surfacing : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Product Development at Massey University, Palmerston North, New Zealand

    Get PDF
    The purpose of this research was to develop a formulation for a polymer modified bitumen emulsion road surfacing product called microsurfacing to a mid-scale prototype stage. A supplementary part of the development was to investigate the polymer-bitumen interactions and how they affected the products end properties using confocal microscopy. The formulation development consisted of three stages: technical design specifications, initial design, detailed design. The technical specification was developed to define the product performance in quantitative measures, and set the initial formulation parameters to work within. The initial design development screened three polymers, four methods of adding polymer to the emulsion and two grades of bitumen. Experimental design techniques were used to determine the best polymer-bitumen combination and emulsion process method. Further experimental investigations consisted of screening three emulsifiers and assessing the effect of aggregate cleanliness on the surfacing abrasion and curing rate. The detailed design used experimental factorial design to examine the effects of polymer concentration, emulsifier level, and emulsifier pH on the emulsion stability, microsurfacing wear resistance and cure rate. The emulsion residue was observed using confocal microscopy with fluorescence light and the microsurfacing mixture using both fluorescent and reflected light. The research showed that a emulsion using 100 penetration grade Safaniya bitumen with SBR latex polymer post added could provide microsurfacing abrasion resistance of less than 100 g/m 2 ; an improvement of 85% on the minimum specification. The vertical permanent deformation was less than the 10% and could not be attained without polymer addition. The use of aggregate with a high cleanliness and an alkyl amidoamine emulsifier resulted in surfacing cohesion development of 20 kg-cm within 90 minutes, which compares closely to the international specification. Unexpected results not reported before were that the emulsion residue from biphase modified emulsions had a softening point up to 10°C higher than polymer modified hot bitumen with the same polymer concentration. The biphase emulsified binder residue also has a very different microstructure to hot modified bitumen and this structure has been proposed to help account for the improved resistance to high temperature and applied stress. Modifications to the formulation are to improve the emulsion settlement and should focus on the density difference between the bitumen and polymer latex. This research has shown that a microsurfacing reading product can be successfully formulated with New Zealand bitumen and aggregate sources to meet key specified performance requirements. By systematically investigating the effects of materials on the performance properties of the product, a formulation ready for a mid-scale experiment has been proposed

    High surface area, emulsion-templated carbon foams by activation of polyHIPEs derived from Pickering emulsions.

    Get PDF
    Carbon foams displaying hierarchical porosity and excellent surface areas of >1400 m2/g can be produced by the activation of macroporous poly(divinylbenzene). Poly(divinylbenzene) was synthesized from the polymerization of the continuous, but minority, phase of a simple high internal phase Pickering emulsion. By the addition of KOH, chemical activation of the materials is induced during carbonization, producing Pickering-emulsion templated carbon foams, or carboHIPEs, with tailorable macropore diameters and surface areas almost triple that of those previously reported. The retention of the customizable, macroporous open-cell structure of the poly(divinylbenzene) precursor and the production of a large degree of microporosity during activation leads to tailorable carboHIPEs with excellent surface areas

    High-resolution tracking in a GEM-Emulsion detector

    Full text link
    SHiP (Search for Hidden Particles) is a beam dump experiment proposed at the CERN SPS aiming at the observation of long lived particles very weakly coupled with ordinary matter mostly produced in the decay of charmed hadrons. The beam dump facility of SHiP is also a copious factory of neutrinos of all three kinds and therefore a dedicated neutrino detector is foreseen in the SHiP apparatus. The neutrino detector exploits the Emulsion Cloud Chamber technique with a modular structure, alternating walls of target units and planes of electronic detectors providing the time stamp to the event. GEM detectors are one of the possible choices for this task. This paper reports the results of the first exposure to a muon beam at CERN of a new hybrid chamber, obtained by coupling a GEM chamber and an emulsion detector. Thanks to the micrometric accuracy of the emulsion detector, the position resolution of the GEM chamber as a function of the particle inclination was evaluated in two configurations, with and without the magnetic fiel

    A Discrete Particle Simulation Study of Solids Mixing in a Pressurized Fluidized Bed

    Get PDF
    A fluidized bed containing polymeric particles is investigated using a state-of-the-art soft-sphere discrete particle model (DPM). The pressure dependency of particle mixing, flow patterns and bubble behaviour are analysed. It is found that with increasing pressure a less distinct bubble-emulsion structure and improved solids mixing can be observed

    Influence of Mucilage Viscosity On The Globule Structure And Stability Of Certain Starch Emulsions

    Get PDF
    A study was carried out to determine the influence of mucilage viscosity on the globule structure (i.e. size and number) of certain starch emulsions. The starches investigated were cassava, potato and maize. The emulsions were prepared by mixing the starch mucilage of a predetermined concentration 4%w/v with arachis oil in the ratio 50:50, using a silverson mixer fitted with a dispersator head. The emulsions were stored at room temperature (28±20C) for 7 days. Changes in globule size were monitored by photomicroscopy. Viscosities of the mucilage and those of resulting emulsions were determined using a capillary flow method. The viscosities of the emulsions expressed as time of flow (seconds), were 680 (cassava starch), 369 (potato starch) and 270 (Maize starch), and for the mucilage 510 (cassava), 336 (potato) and 248 (maize). The corresponding mean globule sizes of the fresh emulsions were (µm) 28±6, 42±6 and 45±5 respectively. The increase in globule size during storage (measure of globule coalescence rate) was 1.8±0.2µm day -1 (cassava), 3.5±0.2µm day -1 (potato) and 4.6±0.3µm day -1 (maize). Thus, a higher viscosity of the dispersion medium is associated with the production of finer and more stable emulsions

    Fat crystals : a tool to inhibit molecular transport in W/O/W double emulsions

    Get PDF
    Water-in-oil-in-water (W/O/W) double emulsions are a promising technology for encapsulation applications of water soluble compounds with respect to functional food systems. Yet molecular transport through the oil phase is a well-known problem for liquid oil-based double emulsions. The influence of network crystallization in the oil phase of W/O/W globules was evaluated by NMR and laser light scattering experiments on both a liquid oil-based double emulsion and a solid fat-based double emulsion. Water transport was assessed by low-resolution NMR diffusometry and by an osmotically induced swelling or shrinking experiment, whereas manganese ion permeation was followed by means of T-2-relaxometry. The solid fat-based W/O/W globules contained a crystal network with about 80% solid fat. This W/O/W emulsion showed a reduced molecular water exchange and a slower manganese ion influx in the considered time frame, whereas its globule size remained stable under the applied osmotic gradients. The reduced permeability of the oil phase is assumed to be caused by the increased tortuosity of the diffusive path imposed by the crystal network. This solid network also provided mechanical strength to the W/O/W globules to counteract the applied osmotic forces

    Highly permeable macroporous polymers synthesized from pickering medium and high internal phase emulsion templates

    Get PDF
    Open porous poly-Plckerlng-M/HIPEs with permeabilities of up to 2.6 D were prepared by polymerisation of PickeringM/HIPEs to which small amounts of surfactant were added. The permeability of these poly-Pickering-M/HIPEs is more than 5 times that of conventional polyHI PEs. This approach allows the synthesis of a novel class of permeable particle reinforced macroporous polymers with significant potential for practical exploitation. (Figure Presented) © 2010 WILEY-VCH VerlagGmbH S.Co. KCaA, Weinheim

    Fragmentation channels of relativistic 7^7Be nuclei in peripheral interactions

    Get PDF
    Nuclei of 7^7Li were accelerated at the JINR Nuclotron. After the charge-exchange reaction involving these nuclei at an external target a second 7^7Be beam of energy 1.23A GeV was formed. This beam was used to expose photo-emulsion chambers. The mean free path for inelastic 7^7Be interactions in emulsion λ\lambda=14.0±\pm0.8 cm coincides within the errors with those for 6^6Li and 7^7Li nuclei. More than 10% of the 7^7Be events are associated with the peripheral interactions in which the total charge of the relativistic fragments is equal to the charge of the 7^7Be and in which charged mesons are not produced. An unusual ratio of the isotopes is revealed in the composition of the doubly charged 7^7Be fragments: the number of 3^3He fragments is twice as large as that of 4^4He fragments. In 50% of peripheral interactions, a 7^7Be nucleus decays to two doubly charged fragments. The present paper gives the channels of the 7^7Be fragmentation to charged fragments. In 50% of events, the 7^7Be fragmentation proceeds only to charged fragments involving no emission of neutrons. Of them, the 3^3He+4^4He channel dominates, the 4^4He+d+p and 6^6Li+pchannels constitute 10% each. Two events involving no emission of neutrons are registered in the 3-body 3^3He+t+p and 3^3He+d+d channels. The mean free path for the coherent dissociation of relativistic 7^7Be nuclei to 3^3He+4^4He is 7±\pm1 m. The particular features of the relativistic 7^7Be fragmentation in such peripheral interactions are explained by the 3^3He+4^4He 2-cluster structure of the 7^7Be nucleus.Comment: 10 pages, 3 figures, 3 tables, conference: Conference on Physics of Fundamental Interactions, Moscow, Russia, 5-9 Dec 200
    corecore