352,724 research outputs found

    A Hardware Time Manager Implementation for the Xenomai Real-Time Kernel of Embedded Linux

    Full text link
    Nowadays, the use of embedded operating systems in different embedded projects is subject to a tremendous growth. Embedded Linux is becoming one of those most popular EOSs due to its modularity, efficiency, reliability, and cost. One way to make it hard real-time is to include a real-time kernel like Xenomai. One of the key characteristics of a Real-Time Operating System (RTOS) is its ability to meet execution time deadlines deterministically. So, the more precise and flexible the time management can be, the better it can handle efficiently the determinism for different embedded applications. RTOS time precision is characterized by a specific periodic interrupt service controlled by a software time manager. The smaller the period of the interrupt, the better the precision of the RTOS, the more it overloads the CPU, and though reduces the overall efficiency of the RTOS. In this paper, we propose to drastically reduce these overheads by migrating the time management service of Xenomai into a configurable hardware component to relieve the CPU. The hardware component is implemented in a Field Programmable Gate Array coupled to the CPU. This work was achieved in a Master degree project where students could apprehend many fields of embedded systems: RTOS programming, hardware design, performance evaluation, etc.Comment: Embed With Linux (EWiLi) workshop, Lorient : France (2012

    Model based code generation for distributed embedded systems

    Get PDF
    Embedded systems are becoming increasingly complex and more distributed. Cost and quality requirements necessitate reuse of the functional software components for multiple deployment architectures. An important step is the allocation of software components to hardware. During this process the differences between the hardware and application software architectures must be reconciled. In this paper we discuss an architecture driven approach involving model-based techniques to resolve these differences and integrate hardware and software components. The system architecture serves as the underpinning based on which distributed real-time components can be generated. Generation of various embedded system architectures using the same functional architecture is discussed. The approach leverages the following technologies – IME (Integrated Modeling Environment), the SAE AADL (Architecture Analysis and Design Language), and Ocarina. The approach is illustrated using the electronic throttle control system as a case study

    SystemCSP : a graphical language for designing concurrent component-based embedded control systems

    Get PDF
    The main contribution of this thesis is the introduction of SystemCSP, a novel graphical design language for specification of interactions in concurrent component based embedded control systems. SystemCSP was developed in the scope of the embedded control systems application area. However, SystemCSP is intended to be used in any kind of software/hardware development dealing with interaction of concurrent components

    FPGA-based module for SURF extraction

    Get PDF
    We present a complete hardware and software solution of an FPGA-based computer vision embedded module capable of carrying out SURF image features extraction algorithm. Aside from image analysis, the module embeds a Linux distribution that allows to run programs specifically tailored for particular applications. The module is based on a Virtex-5 FXT FPGA which features powerful configurable logic and an embedded PowerPC processor. We describe the module hardware as well as the custom FPGA image processing cores that implement the algorithm's most computationally expensive process, the interest point detection. The module's overall performance is evaluated and compared to CPU and GPU based solutions. Results show that the embedded module achieves comparable disctinctiveness to the SURF software implementation running in a standard CPU while being faster and consuming significantly less power and space. Thus, it allows to use the SURF algorithm in applications with power and spatial constraints, such as autonomous navigation of small mobile robots

    Self-Partial and Dynamic Reconfiguration Implementation for AES using FPGA

    Get PDF
    This paper addresses efficient hardware/software implementation approaches for the AES (Advanced Encryption Standard) algorithm and describes the design and performance testing algorithm for embedded system. Also, with the spread of reconfigurable hardware such as FPGAs (Field Programmable Gate Array) embedded cryptographic hardware became cost-effective. Nevertheless, it is worthy to note that nowadays, even hardwired cryptographic algorithms are not so safe. From another side, the self-reconfiguring platform is reported that enables an FPGA to dynamically reconfigure itself under the control of an embedded microprocessor. Hardware acceleration significantly increases the performance of embedded systems built on programmable logic. Allowing a FPGA-based MicroBlaze processor to self-select the coprocessors uses can help reduce area requirements and increase a system's versatility. The architecture proposed in this paper is an optimal hardware implementation algorithm and takes dynamic partially reconfigurable of FPGA. This implementation is good solution to preserve confidentiality and accessibility to the information in the numeric communication

    Crypto Embedded System for Electronic Document

    Get PDF
    In this paper, a development of low-cost RSA-based Crypto Embedded System targeted for electronic document security is presented. The RSA algorithm is implemented in a re-configurable hardware, in this case Field Programmable Gate Array (FPGA). The 32-bit soft cores of AlteraÂ’s Nios RISC processor is used as the basic building blocks of the proposed complete embedded solutions. AlteraÂ’s SOPC Builder is used to facilitate the development of crypto embedded system, particularly in hardware/software integration stage. The use of Cryptographic Application Programming Interface (CAPI) to bridge the application and the hardware, and the associated communication layer in the embedded system is also discussed. The result obtained shows that the crypto embedded system provides a suitable compromise between the constraints of speed, space and required security level based on the specific demands of targeted applications
    corecore