276,502 research outputs found

    A unified model for temperature dependent electrical conduction in polymer electrolytes

    Full text link
    The observed temperature dependence of electrical conduction in polymer electrolytes is usually fitted with two separated equations: an Arrhenius equation at low temperatures and Vogel-Tamman-Fulcher (VTF) at high temperatures. We report here a derivation of a single equation to explain the variation of electrical conduction in polymer electrolytes at all temperature ranges. Our single equation is in agreement with the experimental dataComment: 13 pages, 2 figure

    Conduction at domain walls in insulating Pb(Zr0.2_{0.2}Ti0.8_{0.8})O3_3 thin films

    Full text link
    Among the recent discoveries of domain wall functionalities, the observation of electrical conduction at ferroelectric domain walls in the multiferroic insulator BiFeO3 has opened exciting new possibilities. Here, we report evidence of electrical conduction also at 180{\deg} ferroelectric domain walls in the simpler tetragonal ferroelectric PZT thin films. The observed conduction shows nonlinear, asymmetric current-voltage characteristics, thermal activation at high temperatures and high stability. We relate this behavior to the microscopic structure of the domain walls, allowing local defects segregation, and the highly asymmetric nature of the electrodes in our local probe measurements

    Tuning the electrical transport properties of double-walled carbon nanotubes by semiconductor and semi-metal filling

    Get PDF
    Manipulating the electrical properties of carbon nanotubes through semi-metal or semiconductor filling is of paramount importance in the realization of nano-electronic devices based on one dimensional composite materials. From low temperature electrical conductivity measurements of a network, of empty and filled double-walled carbon nanotubes (DWNT’s), we report a transition in electrical transport features from hopping to weakly activated conduction by HgTe filling and also semi-metallic conduction in selenium (Se) filled DWNT’s. Magneto-resistance (MR) studies of the filled DWNT’s show suppression of the hopping conduction and a signature of 3D weak localization for Se@DWNT’s at low temperatures and high magnetic fields. These results are discussed on the basis of strength of interaction between the filler material and the inner-walls of the host DWNT’s, which enhances the electronic density of states (DOS) in the material as well as the change in the property of the filler material due to constrained encapsulation

    Luttinger-liquid-like transport in long InSb nanowires

    Full text link
    Long nanowires of degenerate semiconductor InSb in asbestos matrix (wire diameter is around 50 \AA, length 0.1 - 1 mm) were prepared. Electrical conduction of these nanowires is studied over a temperature range 1.5 - 350 K. It is found that a zero-field electrical conduction is a power function of the temperature GTαG\propto T^\alpha with the typical exponent α4\alpha \approx 4. Current-voltage characteristics of such nanowires are found to be nonlinear and at sufficiently low temperatures follows the power law IVβI\propto V^\beta. It is shown that the electrical conduction of these nanowires cannot be accounted for in terms of ordinary single-electron theories and exhibits features expected for impure Luttinger liquid. For a simple approximation of impure LL as a pure one broken into drops by weak links, the estimated weak-link density is around 10310410^3-10^4 per cm.Comment: 5 pages, 2 figure

    Electrical conduction processes in thin films of cadmium sulfide

    Get PDF
    Electrical conduction properties of vacuum evaporated thin cadmium sulfide film

    Violation of Wiedemann-Franz law at the Kondo breakdown quantum critical point

    Full text link
    We study both the electrical and thermal transport near the heavy-fermion quantum critical point (QCP), identified with the breakdown of the Kondo effect as an orbital selective Mott transition. We show that the contribution to the electrical conductivity comes mainly from conduction electrons while the thermal conductivity is given by both conduction electrons and localized fermions (spinons), scattered with dynamical exponent z=3z = 3. This scattering mechanism gives rise to a quasi-linear temperature dependence of the electrical and thermal resistivity. The characteristic feature of the Kondo breakdown scenario turns out to be emergence of additional entropy carriers, that is, spinon excitations. As a result, we find that the Wiedemann-Franz ratio should be larger than the standard value, a fact which enables to differentiate the Kondo breakdown scenario from the Hertz-Moriya-Millis framework
    corecore