1,108,758 research outputs found

    Electric-field control of spin-orbit torque in a magnetically doped topological insulator

    Full text link
    Electric-field manipulation of magnetic order has proved of both fundamental and technological importance in spintronic devices. So far, electric-field control of ferromagnetism, magnetization and magnetic anisotropy has been explored in various magnetic materials, but the efficient electric-field control of spin-orbit torque (SOT) still remains elusive. Here, we report the effective electric-field control of a giant SOT in a Cr-doped topological insulator (TI) thin film using a top-gate FET structure. The SOT strength can be modulated by a factor of 4 within the accessible gate voltage range, and it shows strong correlation with the spin-polarized surface current in the film. Furthermore, we demonstrate the magnetization switching by scanning gate voltage with constant current and in-plane magnetic field applied in the film. The effective electric-field control of SOT and the giant spin-torque efficiency in Cr-doped TI may lead to the development of energy-efficient gate-controlled spin-torque devices compatible with modern field-effect semiconductor technologies.Comment: 22 pages, 4 figure

    Control of electric current by graphene edge structure engineering

    Full text link
    In graphene nanoribbon junctions, the nearly perfect transmission occurs in some junctions while the zero conductance dips due to anti-resonance appear in others. We have classified the appearance of zero conductance dips for all combinations of ribbon and junction edge structures. These transport properties do not attribute to the whole junction structure but the partial corner edge structure, which indicates that one can control the electric current simply by cutting a part of nanoribbon edge. The ribbon width is expected to be narrower than 10 nm in order to observe the zero conductance dips at room temperature.Comment: accepted for publication in Appl. Phys. Let

    Design and implementation of hybrid vehicle using control of DC electric motor

    Get PDF
    The electric motors and its control technology are key components of hybrid electric vehicles (HEVs). Control of the electric motor is a fundamental issue for traction application in electric vehicles and HEVs. This paper presents the design, development and implementation of a hybrid vehicle using both an electric motor and petrol engine to increase efficiency and decrease carbon footprint. Initially, a prototype of a HEV is designed and the performance values are calculated, before a control system is developed and implemented to control the DC motor speed using a microcontroller as the vehicle’s electronic control unit along with simple proportional integral derivative (PID) control using speed as a feedback mechanism. The prototype made incorporated voltage, current, speed and torque sensors for feedback resulting in a closed loop control system which successfully matched the speed input of a user-controlled pedal sensor. A user interface was developed to show the driver of the vehicle key variables such as the revolutions per minute (RPM) of the motor, the speed of the vehicle along with the current being drawn, and the voltage applied to the motor with overall power. To output a variable voltage from the Arduino, a digital output was used with pulse width modulation (PWM) capabilities in order to provide a variable DC voltage to the speed controller

    Electric-field control of domain wall nucleation and pinning in a metallic ferromagnet

    Get PDF
    The electric (E) field control of magnetic properties opens the prospects of an alternative to magnetic field or electric current activation to control magnetization. Multilayers with perpendicular magnetic anisotropy (PMA) have proven to be particularly sensitive to the influence of an E-field due to the interfacial origin of their anisotropy. In these systems, E-field effects have been recently applied to assist magnetization switching and control domain wall (DW) velocity. Here we report on two new applications of the E-field in a similar material : controlling DW nucleation and stopping DW propagation at the edge of the electrode

    MULTIFUNCTIONAL POWER QUALITY CORRECTION SYSTEM

    Get PDF
    Study the system of electric power quality control based on AVI with PWM in the systems of group feed of electromechanics with the direct-current unibus
    corecore