
Design and implementation of hybrid
vehicle using control of DC electric motor

Muhammad Majid Hussain
Al Rashid Mustafa
Muhammad Akmal Chaudary
Abdul Razaq

© 2019 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing
this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of
this work in other works.

The final published version is available from doi:
https://doi.org/10.1109/UPEC.2019.8893604

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Abertay Research Portal

https://core.ac.uk/display/237444652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/UPEC.2019.8893604

Design and Implementation of Hybrid Vehicle using

Control of DC Electric Motor

Muhammad Majid Hussain

Faculty of Computing, Engineering and

Science

University of South Wales

Cardiff, United Kingdom

muhammad.hussain@southwales.ac.uk

Al Rashid Mustafa
The Centre for Automotive & Power

Systems Engineering

University of South Wales

Cardiff, United Kingdom
rashid.mustafa@southwales.ac.uk

Abdul Razaq

School of Design and Informatics

Abertay University

Dundee, United Kingdom

a.razaq@abertay.ac.uk

Muhammad Akmal Chaudary

Department of Electrical and Computer

Engineering

Ajman University

Ajman, United Arab Emirates

m.akmal@ajman.ac.ae

Abstract—The electric motors and its control technology

are key components of hybrid electric vehicles (HEVs). Control

of the electric motor is a fundamental issue for traction

application in electric vehicles and HEVs. This paper presents

the design, development and implementation of a hybrid

vehicle using both an electric motor and petrol engine to

increase efficiency and decrease carbon footprint. Initially, a

prototype of a HEV is designed and the performance values

are calculated, before a control system is developed and

implemented to control the DC motor speed using a

microcontroller as the vehicle’s electronic control unit along

with simple proportional integral derivative (PID) control

using speed as a feedback mechanism. The prototype made

incorporated voltage, current, speed and torque sensors for

feedback resulting in a closed loop control system which

successfully matched the speed input of a user-controlled pedal

sensor. A user interface was developed to show the driver of

the vehicle key variables such as the revolutions per minute

(RPM) of the motor, the speed of the vehicle along with the

current being drawn, and the voltage applied to the motor with

overall power. To output a variable voltage from the Arduino,

a digital output was used with pulse width modulation (PWM)

capabilities in order to provide a variable DC voltage to the

speed controller.

Keywords— DC motor, hybrid electrical vehicles, PID controller,

speed control, user interface

I. INTRODUCTION

The model of a HEV is multifaceted with many different
components. Each component needs to be modelled. The
design of each component is a difficult task as the parameters
of one component can devastate the power level of others.
The consequences of inappropriate power might make the
vehicle unnecessarily expensive or inefficient [1]. In an
urban area, as a result of emission-free and environmentally
friendly zones, HEVs represent a key factor in improvement
of traffic and moreover reduction of the carbon footprint.
The major requirement for traction motors used in HEVs is
to generate propulsion torques over an extensive speed range.
Two main types of motor are commonly used for HEVs – the
permanent magnet motor (PMM) and the induction motor
(IM).

Problems relating to the energy crisis and extensive
carbon emission have become more and more serious, and
electric vehicles (EVs) seem to be the ideal solution. As
batteries have too low energy density and charging and
discharging issues, the alternative choice is the HEV.

Different types of DC motors have been used in HEVs,
including the brushless DC motor, which has the benefits of
light weight and high efficiency [2, 3]. An electric motor is
one of the HEV’s core components. The important aspects of
electric motors used in HEVs are high power density, high
starting torque, high efficiency, robustness, good reliability
and wide range of speed control [4, 5].

The use of electric motors in everyday life has become
very significant. Generally, electric motors are used in
conveyors, air-conditioning and EVs. Technically, the HEV
contains four main parts for its drive: the control system and
motor and its driving system, as well as energy storage and
its body, of which the motor and its drive system determine
the overall attributes of EVs. When designing EVs, we
should consider the main performance requirements – for
example, quick start and brake, variable speed, large load
and high power. Numerous methods are already used in the
speed control of DC motors, one of which is PID [6]. PID
has a simple structure and has advantages in each
framework. The application of a PID controller for a HEV is
presented in the literature [7, 8].

The main aim of this paper is to design and develop a
hybrid vehicle prototype, simulate it, and analyse the effect
of incorporated voltage, current, speed and torque. In
addition, a new prototype to control DC motor speed using a
PID microcontroller of HEV is developed. The proposed
HEV prototype is assembled with a simple design procedure
and low-cost available equipment. The design of the PID
controller is subsequently introduced to tune the PID
controller’s three parameters, Kp, Ki and Kd, based on
proving the functionality of the proposed algorithm from a
set of simulations.

II. TYPES OF HYBRID TECHNOLOGIES

Two main types of hybrid technology are used today –
parallel hybrid and series hybrid vehicles [9]. The differences
come in the drivetrain technology and how the power is
delivered to the wheels. There are advantages and
disadvantages in both cases and deciding on a particular type
of hybrid car heavily depends on what kind of journeys the
car is going to be making or what the car is being used for.
Figures 1 and 2 show the types of hybrid vehicle
technologies.

978-1-7281-3349-2/19/$31.00 ©2019 IEEE

A. Series Drivetrain

In this, the electric motor provides power to the wheels
directly. Typically, a small electric engine either charges the
batteries as required or more rarely is used to power the
electric motor directly. This is one of the simplest forms of
hybrid vehicle. Series hybrid vehicles are much more
efficient in start–stop traffic, benefitting from instant torque
at low speeds. However, the larger battery pack and the need
for a generator can often make it more expensive.

Fig. 1. Series hybrid system.

B. Parallel Drivetrain

In this, both the petrol engine and the electric motors are
used to provide power to the wheels in a parallel system
which can provide performance increases as well as
increased efficiency. As a result of the regenerative braking
or coasting system in parallel cars which utilise the engine’s
energy in moments of low demand, the battery pack can
often be smaller. This system is better for higher speeds and
longer ranges as it is less reliant on the electric motor. It still,
however, benefits in start–stop conditions, simultaneously
using the electric motor to boost efficiency and performance.

Fig. 2. Parallel hybrid system.

III. DESIGN AND DEVELOPMENT

A flow chart has been developed for the MATLAB
/Simulink software programme so far. This can be seen in
figure 3, while figure 4 is a schematic diagram for prototype
testing. The system starts by checking the initial system
parameters such as motor voltage, battery voltage and current
going to the motor. If all of these parameters are within
range, ensuring the motor is safe to run, the liquid crystal
display (LCD) is initialised and updated. The ignition switch
is then checked along with the direction switches. If the
system is ready to run, the PID control is implemented using
the pedal sensor as the input (set point) and the PWM signal
as the output using the speed of the shaft as the feedback.
Once the PID control is implemented, the software code goes

back, reading the current and voltages before updating the
LCD screen. Once the LCD screen is updated, the hardware
switches are integrated and the PID control implemented
again. This worked well to prove the concept – however, the
software code is optimised further when the LCD screen is
successfully run off a separate microcontroller.

Fig. 3. Flow chart for proyotype design concept.

Fig. 4. Schematics of current electrical and electronic PID controlled motor
prototype.

IV. INITIAL TESTING OF DC MOTOR

The motor obtained was manufactured by Lynch Motors
in Honiton, UK, and is a LEM 170, which is a 48V, 5.54kW
motor rated at 3264 RPM and 16.2Nm of torque. The motor
was tested with a bench power supply to establish if it was
operational. The no-load current of the motor was found to
be around 6A and the motor was run with a varying supply
voltage of up to 30VDC. It was recommended in the
installation manual to let the motor run for half an hour with
less than 30% full current if the motor had not been used in
more than two years. During the test of the motor, it was
therefore left running for half an hour supervised. The motor
ran at variable speeds and worked as expected. Figure 5
shows the testing of the DC motor. It was found that, after
the motor accelerated to the final speed allowed by the
voltage, the current drawn was between 6-7 amps.

During the testing, the voltage was set at different levels
and the speed of the shaft was measured with a digital
tachometer by applying a reflective strip to the shaft. The

results from the test can be seen in figure 6, which shows a
graph of the speed of the motor versus the voltage applied to
the motor. It was found that the speed rose proportionally to
the voltage applied, which was expected of this DC motor,
and the final speed was found to be 3320 RPM, faster than
stated in the datasheet. This is probably because no load was
present on the motor.

Fig. 5. Testing of the DC motor using a bench power supply.

Fig. 6. Applied voltage vs RPM of the shaft.

V. TESTING OF BRUSHED DC CONTROLLER

A 400A brushed DC controller with high power
protection and digital and analogue IO for control of the
motor in different applications was designed and tested. This
controller can be controlled from a potential divider, hall
sensor or 0-5V variable power supply. The controller is
pictured in figure 7. It was set up with the power supply and
a prototype throttle as an input for initial testing. This was to
confirm that the motor and controller worked together before
adding any extra hardware and software. The setup can be
seen in figure 8, and a simplified schematic of the
connections made is set out in figure 9.

Fig. 7. 4PQM controller.

Fig. 8. 4QPM controller and LEM 170 DC Motor.

Fig. 9. Simplified schematics of wiring.

VI. THROTTLE DEVELOPMENT FOR ELECTRIC MOTOR

The first step in introducing a microcontrolled input for
the brushless DC motor controller was to procure a foot
pedal and test read its output with a microcontroller. The
microcontroller selected was an Arduino Nano and the foot
pedal chosen was a standard foot pedal used on electric
motorcycles. The device runs off a 5V input and gives an
output signal of 1V to 4.2V depending on how much the
pedal is pressed. A simple Arduino Nano was used to help
with identification of the IO pins and communication
protocols. The foot pedal was connected to a 5V supply and
the output was connected to a multimeter to ensure that the
output voltage was in the range of the Arduino’s analogue
reading capabilities. The Arduino can read up to 5V DC and,
when testing the foot pedal, it was found that the output
ranged from 0.9V to 4.3V, which is slightly different from
the product description. There is no datasheet with this
product, so it was manually tested. However, the output was
found to be in the range of the Arduino’s analogue reading
capabilities.

The foot pedal was connected to the Arduino using one
of the digital inputs and an analogue read function was used
to read the voltage output of the pedal sensor. The Arduino
uses a 10-bit analogue to digital converter (ADC) in the
analogue ports. Using equation 1, it can be determined that
the maximum range (5V) of the analogue input will be
converted to 1024 divisions, otherwise known as ticks or
divisions:

2n = Maximum deviation (1)

where n = the number of bits of the ADC

From this, the number of ticks for the minimum and

maximum outputs of the pedal sensor can be calculated and
inputted into the Arduino programme. If 5V is equal to 1024
ticks, then 0.9V represents 184 ticks and 4.3V is equal to 881
ticks. A simple code was uploaded into the Arduino just to
read the pedal sensor. To read the analogue input, a simple
code was written in the structured text, which is a C++ based
programming language. This can be seen in code listing 1.

This programme reads the analogue input continuously
and prints the value on the serial monitor on the Arduino’s
IDE. Once the programme was uploaded and tested, the
range of the pedal sensor was found to range from 185 ticks
to 882 ticks, close to the previously calculated values. The
values read on the serial monitor were found to be slightly
unstable and fluctuated around ±10 ticks. To increase the
reliability of the analogue read function the “analogRead”
line in the programme was replaced with a function that
takes an average of 10 readings instead. The code for the
new read sensor function can be seen in code listing 2.

This function creates an array and reads the analogue
input 10 times before refreshing the array and starting again.
Before refreshing the array, it takes an average of the
readings and assigns this to the new pedal sensor variable.
This code provided more stable results and the number of
ticks was found to fluctuate around ±2 instead of ±10. A
fluctuation of ±2 ticks results in a fluctuation of
approximately 0.01V, which is an acceptable error, from the
pedal sensor. The next step was to map the pedal sensor’s
voltage reading to a value of 0–4V in order to replicate the
hand throttle input on the DC motor controller.

VII. MICROCONTROLLER DESIGN FOR INPUT CONTROL

To output a variable voltage from the Arduino, a digital
output needs to be used with PWM capabilities in order to
provide a variable DC voltage to the speed controller. When
the speed controller was tested it was found that input of 0 to
4V is required to vary the motor from no speed to full speed.
The Arduino has the capability of outputting 5V from any of
its digital outputs and PWM can be used to vary this voltage
within the range of 0 to 5V. The digital to analogue converter
(DAC) in the Arduino is an 8-bit DAC which results in 256
divisions using equation 1. The Arduino has a range of 0 to
255 ticks when using the PWM output as it starts from 0 and
not 1. This means that writing 255 to the digital output will
provide 5V while writing 0 will provide 0V. To provide a
maximum of 4V, the digital output therefore needs to be
limited to 204 ticks which will output a maximum voltage of
4V. This means the input of the pedal sensor, which was
found to be 185 to 882 ticks, needs to be mapped to 0 to 204
ticks when writing to the PWM output to provide a relative
0–4V, depending on the position of the pedal sensor. To
achieve this, a map was used to simplify the mathematics
involved and save CPU processing memory. Digital output
was assigned as the throttle electric speed control (ESC)
input and the pedal sensor was mapped to provide a 0 to 4V
output using this pin. The new loop code for this can be seen
in code listing 3.

This was then uploaded into the Arduino and a
multimeter was attached to the PWM output. The voltage
was measured while the pedal was pressed to ensure that the
voltage output was within range for the ESC. As the pedal
was pressed it was found that the output of the Arduino was
within the 0 to 4V range and worked as expected. The PWM
output of the Arduino was then connected to pin 10 and
negative connections of the ESC to replace the hand throttle
to test the Arduino as a throttle input. The Arduino was
powered up using the PC and the DC motor hardware was
powered up using the power supply. The system was tested
in both forward and reverse while measuring the throttle
input from the Arduino. The system ran reasonably well and
up to full speed in both forward and reverse, replicating the
use of the hand throttle from the previous test. Again, the
speed was found to be 3100 RPM in forward and 1780 RPM
in reverse using the digital tachometer with 48V being used
as the supply voltage. The addition of the Arduino circuitry
for the speed controller can be found in a simple schematic in
figure 10. The next step is to develop a speed feedback in
order to have a reference point for the PID controller.

Fig. 10. Simplified schematics of system with foot pedal and Arduino.

VIII. DEVELOPMENT OF PID CONTROL FOR DC MOTOR

The PID control developed in this system used the pedal
sensor as the set point and the input taken from the speed
sensor while the output is the level of PWM sent to the ESC.
Instead of using the RPM of the shaft as the input of the
speed sensor, miles per hour (MPH) was used in order to
control the system by the final speed of the vehicle after the
gearing ratio had been considered. To do this, the speed of
the shaft in RPM needs to be converted to MPH by
considering the diameter of the driving wheels and gearing
ratio to determine the speed of the vehicle. To develop the
PID control, a gearing ratio of 1:5 was used and wheels with
a diameter of 18 inches as these are the intended attributes
used in the mechanical build. This was fine-tuned in software
when the vehicle was assembled with actual gearing ratio
and wheel diameter.

The circumference of an 18 inch diameter wheel was
calculated to be 1.4363 metres using the above sequence and
the calculated circumference. The following formula was
developed to convert the maximum RPM of the motor shaft
into MPH for the vehicle.

From this, it was deduced that 93.36 RPM would result in

the vehicle travelling at 1 MPH. This statistic can be used in

the software to calculate the vehicle’s speed at any given
moment. This new MPH reading was used as the PID
controller input. The pedal sensor was mapped to a
maximum of 30 MPH instead of being mapping directly to
the PWM output of the Arduino, and this new mapped value
was used as the set point of the controller. This means that,
as the pedal is pressed from nothing to fully pressed, a
proportional desired MPH can be calculated and used as the
set point. The Arduino’s PWM output was now set as the
PID controller output. This changed the control system from
an open loop system to a closed loop system able to try to
attain the speed set by the pedal sensor via altering the PWM
output accordingly. This was implemented into the Arduino
coding with the proportional constant (Kp) set to 1 and the
integral and derivative constants (Ki and Kd) set to 0 ready
for the Ziegler Nicholas tuning method to be used. This code
was uploaded into the Arduino and tested with only the Kp
set to 1. To test the system, the pedal sensor was removed
through software and the set point was set to 15 MPH for
stability.

Figure 11 shows the plot of the set point and actual motor
speed for the various PID constants and figure 12 shows the
plot of actual speed versus variable set point.

Fig. 11. Actual speed vs setpoint from Arduino IDE (Kp=7.3, Ki=16.13 &
Kd=0.804).

Fig. 12. Actual speed vs variable setpoint (Kp=5.5, Ki=9 & Kd=0.4).

IX. DEVELOMNET OF USER INTERFACE

A user interface was developed to show the driver of the
vehicle key variables such as the RPM of the motor, the
speed of the vehicle in MPH and the current being drawn and
voltage applied to the motor alongside overall power. For
this, an Arduino 3.5-inch TFT touch screen was used. This
was a comprehensive colour screen to develop a user
interface for the vehicle. The screen was compatible with the
Arduino Nano, Uno and Mega and was developed separately
on an Arduino Nano to begin with. It came with a CD with
many examples and tutorials to follow and was used to learn
how to use and operate it. The screen can be seen in figure
13.

Fig. 13. Arduino 3.5" TFT touch screen used for the user interface (Back
and Front).

The screen was connected to the Arduino Nano following
the pinout diagrams seen in figure 14. The examples on the
CD were uploaded into the Arduino and each one was
analysed separately to understand how to manipulate the
code for the needs of this research. A user interface was
developed that showed two different screens that could be
switched with a momentary button. The first screen showed
the speed of the vehicle in MPH on a dial and the RPM on a
vertical bar graph. The second screen showed the power and
current drawn by the motor as well as the battery voltage.
These are shown in figure 14.

Fig. 14. Arduino screen pinout for Arduino Mega.

A user interface was developed to show the driver of the
vehicle key variables such as the RPM of the motor, the
speed of the vehicle in MPH along with the current being
drawn and voltage being applied to the motor along with
overall power. For this an Arduino 3.5-inch TFT Touch
Screen was used. This was a comprehensive colour screen
that was used to develop a user interface for the vehicle. The
screen was compatible with the Arduino Nano, Uno and
Mega and was developed separately on an Arduino Nano to
begin with. The screen came with a CD with many examples
and tutorials to follow and was used to learn how to use and
operate the screen. The screen can be seen in figure 15.

Fig. 15. User interface developed for speed, battery voltage and current.

X. BLUETOOTH SYSTEM FOR USER INTERFACE

COMMUNICATION

A Bluetooth system was developed to send data between
the user interface and the main microcontroller controlling
the ESC. Figure 16 shows a simple diagram of the Bluetooth
system developed using two Bluetooth modules (HC05 and
HC06).

Fig. 16. Schematics of Bluetooth connected LCD screen & opto-isolated
relays for digital IO.

XI. IMPLEMENTATION AND TESTIG

An off-road go-kart frame is used. The frame has been
slightly modified to date to now include a live rear axle and
back and front suspension. This frame is big enough to
support one person and weighs 50kg before any development
on the frame. Figure 17 shows before and after photos of the
work done so far on the go-kart frame.

Fig. 17. Prototype before and after modification.

The first stage of the rig development was to take the
motor and install it onto a sturdy right-angle frame. This was
attached to a base plate and the rest of the electronics were
attached to this. The hall sensor and magnetic disk were
attached to the shaft of the motor, ensuring that the hall
sensor and magnets were within a reasonable distance and
the south side of the magnets faced the hall sensor. The
speed controller was added to the rig with an aluminium
block used as a temporary heatsink. The aluminium block
was cut down to size with four holes drilled in and tapped to
M6 to enable tightening down of the electronic speed
controller to it. Before this was done, a layer of heatsink
paste was applied to the heatsink to help the thermal flow of
any excess heat. The ESC was then tightened to the
aluminium bleak on the rig with a torque of 6 nm, as
suggested in the manual. The digital IO of the ESC was
connected near to the ESC and all wires made as short as
possible. The direction switches were installed and the
ignition switch was changed to a key switch to be
incorporated into the final vehicle. A DC to DC convertor
was incorporated into the system to provide the Arduino with
12V from the battery system. The Arduino Mega was
attached to the base of the rig and all the connections for the
ESC, foot pedal, hall sensor and current sensors were made.
The screen was attached to a wooden base and attached to
the rig. This was wired to the Arduino and all the wiring was
checked to ensure that it was all connected correctly and
there was no risk of damaging any of the equipment on the
first power-up. Four lead acid batteries were placed on the
bottom shelf of the trolley and connected to the ESC. An
opto-electronic controlled relay circuit was sourced which
could handle the voltage and current of an electric start

circuit of a generator or a petrol engine depending on the
build. This allowed for full control of power to the electric
start circuitry of the IC engine while being electrically
isolated from the microcontroller in any cases of high
potential difference. This was tested with a small DC motor,
replicating the starter motor – to activate the relays a high
digital output is needed from the microcontroller. These
worked extremely well and will be used to control any digital
signals needed to control the ESC such as forward, reverse,
start and reset.

Fig. 18. Full installation of the first prototype rig.

XII. CONCLUSION

This paper presented the design and experimental
verification of the DC electric motor to control the speed for
a HEV. The simulation results show that PID control
algorithm can improve the performance of DC electric motor
speed at varied set points, Kp, Ki, Kd, to obtain a reliable
and stable speed. It also clearly shows that the user interface
provides better communication between the Arduino and
PID controller parameters for maximum and stable speed and
operational safety. The implementation and testing outcomes
proved that the proposed prototype and controller are
efficient and accurate for HEVs.

REFERENCES

[1] F. Badin, J. Scordia, and R. Trigui, “Hybrid electric vehicles energy

consumption decrease according to drive train architecture, energy
management and vehicle use,” IET Hybrid Veh. Conf., pp. 213-223,

2006.

[2] C. C. Chan, and K. T. Chau, “An overview of power electronics in
electric vehicles,” IEEE Trans. on Industrial Electronics, vol.

44, issue: 1, 1997.
[3] Z. Q. Zhu, and D. Howe, “Electrical machines and drives for electric,

hybrid, and fuel cell vehicles,” IEEE Proceedings, vol. 95, issue: 4,

2007.
[4] P. Pillay, and R. Krishnan, “Modeling, simulation, and analysis of

permanent-magnet motor drives, Part I: The permanent-magnet

synchronous motor drive, IEEE Trans. on Industry Applications, vol.
25, no. 2, pp. 265-273, 1989.

[5] P. Pillay, and R. Krishnan, “Modeling simulation, and analysis of

permanent-magnet motor drives, Part 11: The brushless DC motor
drive, IEEE Trans. on Industry Applications, vol. 25, no. 2, pp. 274-

279, 1989.

[6] R. Shanmugasundram, M. Zakariah, and N. Yadainah,
“Implementation and performance analysis of digital controllers for

brushless DC motor drives, IEEE/ASME Trans. on Mechatronics,

vol. 19, issue: 1, 2014.
[7] A. K. Yadav, P. Gaur, S. K. Jha, J. R. P. Gupta, and A.P. Mittal,

“Optimal speed control of hybrid electric vehicles, Journal of Power

Electronics, vol. 11, no. 4, pp. 393-400, 2011.
[8] A. K. Yadav, and P. Gaur., “An optimized and improved STF-PID

speed control of throttle controlled HEV, The Arabian Journal for

Science and Engineering, vol. 41, no. 5, pp. 3749-3760, 2016.

[9] K. C. Prajapati, R. Patel, and R. Sagar, “Hybrid vehicle: A study on

technology” International Journal of Engineering Research &

Technology, vol. 3, issue: 12, pp. 1076-1082, 2014.

	Blank Page

