72,145 research outputs found

    Control of elasticity in cast elastomeric shock/vibration isolators

    Get PDF
    Elasticity is determined by isolators physical dimensions and by type of elastomer used. Once elastomer is selected and cast between two concentric tubes of device, isolator elasticity will remain fixed. Isolators having same dimensions can be built to different elasticity requirements using same elastomer

    Ultraviolet-curable Silicone/Urethane Elastomer and Its Selective Modulus Enhancement

    Get PDF
    Department of Chemical EngineeringThermosets usually have brittle structure, but thermosetting polyurethane (PU) is classified as elastomer due to its urethane linkage in the backbone. Polyurethanes are used in many areas in a form of foam, adhesive and especially as an elastomer. To utilize elastomers in various applications without being fractured, various methods to control the mechanical properties of elastomers have been investigated such as incorporating fillers and additives or creating multiple networks. In this study, ultraviolet-curable silicone containing polyurethane acrylate was synthesized from poly(tetrahydrofuran) (PTH), hydroxy-terminated poly(dimethyl siloxane) (PDMS) and isophorone diisocyanate. The polyurethane chain was terminated with acrylate to fabricate modulus tunable and rapidly crosslinkable silicone/urethane composite elastomer. By adding 3-(trimethoxysilyl)propyl acrylate to the silicone/urethane elastomer network, the mechanical properties of silicone/urethane elastomer can be enhanced by creating additional covalent bonds at elevated temperature. The mechanical properties of the silicone-contained PUA elastomer can be enhanced even after complete photopolymerization, and local modulus enhancement is also possible by heating only desired area of the elastomer. We believe that the silicone/urethane elastomer can be used to fabricate flexible devices, force sensor, etc.clos

    Interdigitation between surface-anchored polymer chains and an elastomer : consequences for adhesion promotion

    Full text link
    We study the adhesion between a cross-linked elastomer and a flat solid surface where polymer chains have been end-grafted. To understand the adhesive feature of such a system, one has to study both the origin of the grafted layer interdigitation with the network, and the end-grafted chains extraction out of the elastomer when it comes unstuck from the solid surface. We shall tackle here the first aspect for which we develop a partial interdigitation model that lets us analytically predict a critical surface grafting density σP1/10N3/5\sigma^{*} \simeq P^{{1/10}}N^{-{3/5}} beyond which the layer no longer interdigitates with the elastomer. We then relate this result with recent adhesion measurements

    Melt compounding with graphene to develop functional, high-performance elastomers

    Get PDF
    Rather than using graphene oxide, which is limited by a high defect concentration and cost due to oxidation and reduction, we adopted cost-effective, 3.56 nm thick graphene platelets (GnPs) of high structural integrity to melt compound with an elastomer—ethylene–propylene–diene monomer rubber (EPDM)—using an industrial facility. An elastomer is an amorphous, chemically crosslinked polymer generally having rather low modulus and fracture strength but high fracture strain in comparison with other materials; and upon removal of loading, it is able to return to its original geometry, immediately and completely. It was found that most GnPs dispersed uniformly in the elastomer matrix, although some did form clusters. A percolation threshold of electrical conductivity at 18 vol% GnPs was observed and the elastomer thermal conductivity increased by 417% at 45 vol% GnPs. The modulus and tensile strength increased by 710% and 404% at 26.7 vol% GnPs, respectively. The modulus improvement agrees well with the Guth and Halpin-Tsai models. The reinforcing effect of GnPs was compared with silicate layers and carbon nanotube. Our simple fabrication would prolong the service life of elastomeric products used in dynamic loading, thus reducing thermosetting waste in the environment

    Perfluoroether triazine elastomers

    Get PDF
    The synthesis of high performance elastomers with the high thermal stability and chemical, inertness of perfluoroalkylene triazine and a low glass transition temperature is discussed. Perfluorether triazine elastomers were proposed as potentially superior. It is concluded that the difficulties experienced in fluoroalkytriazine elastomer synthesis can be overcome by a four-step reaction process involving chain extension, triazine ring closure, crosslinking, and elastomer curing. Molecular weight can be controlled in the initial polymer formation so that elastomer modulus can be determined. The final product elastomers exhibit a useful elastomeric range of approximately 45 to 325 C with an oxidative stability superior to other broad range elastomers

    Evaluation of shear mounted elastomeric damper

    Get PDF
    Viton-70 elastomeric shear mounted damper was built and tested on a T-55 power turbine spool in the rotor's high speed balancing rig. This application of a shear mounted elastomeric damper demonstrated for the first time, the feasibility of using elastomers as the primary rotor damping source in production turbine engine hardware. The shear damper design was selected because it was compatible with actual gas turbine engine radial space constraints, could accommodate both the radial and axial thrust loads present in gas turbine engines, and was capable of controlled axial preload. The shear damper was interchangeable with the production T-55 power turbine roller bearing support so that a direct comparison between the shear damper and the production support structure could be made. Test results show that the Viton-70 elastomer damper operated successfully and provided excellent control of both synchronous and nonsynchronous vibrations through all phases of testing up to the maximum rotor speed of 16,000 rpm. Excellent correlation between the predicted and experienced critical speeds, mode shapes and log decrements for the power turbine rotor and elastomer damper assembly was also achieved

    Size-scaling limits of impulsive elastic energy release from a resilin-like elastomer

    Full text link
    Elastically-driven motion has been used as a strategy to achieve high speeds in small organisms and engineered micro-robotic devices. We examine the size-scaling relations determining the limit of elastic energy release from elastomer bands with mechanical properties similar to the biological protein resilin. The maximum center-of-mass velocity of the elastomer bands was found to be size-scale independent, while smaller bands demonstrated larger accelerations and shorter durations of elastic energy release. Scaling relationships determined from these measurements are consistent with the performance of small organisms which utilize elastic elements to power motion. Engineered devices found in the literature do not follow the same size-scaling relationships, which suggests an opportunity for improved design of engineered devices.Comment: 9 pages, 4 figure
    corecore