3,868 research outputs found

    The generalized 3-edge-connectivity of lexicographic product graphs

    Full text link
    The generalized kk-edge-connectivity λk(G)\lambda_k(G) of a graph GG is a generalization of the concept of edge-connectivity. The lexicographic product of two graphs GG and HH, denoted by GHG\circ H, is an important graph product. In this paper, we mainly study the generalized 3-edge-connectivity of GHG \circ H, and get upper and lower bounds of λ3(GH)\lambda_3(G \circ H). Moreover, all bounds are sharp.Comment: 14 page

    Distributed Edge Connectivity in Sublinear Time

    Full text link
    We present the first sublinear-time algorithm for a distributed message-passing network sto compute its edge connectivity λ\lambda exactly in the CONGEST model, as long as there are no parallel edges. Our algorithm takes O~(n11/353D1/353+n11/706)\tilde O(n^{1-1/353}D^{1/353}+n^{1-1/706}) time to compute λ\lambda and a cut of cardinality λ\lambda with high probability, where nn and DD are the number of nodes and the diameter of the network, respectively, and O~\tilde O hides polylogarithmic factors. This running time is sublinear in nn (i.e. O~(n1ϵ)\tilde O(n^{1-\epsilon})) whenever DD is. Previous sublinear-time distributed algorithms can solve this problem either (i) exactly only when λ=O(n1/8ϵ)\lambda=O(n^{1/8-\epsilon}) [Thurimella PODC'95; Pritchard, Thurimella, ACM Trans. Algorithms'11; Nanongkai, Su, DISC'14] or (ii) approximately [Ghaffari, Kuhn, DISC'13; Nanongkai, Su, DISC'14]. To achieve this we develop and combine several new techniques. First, we design the first distributed algorithm that can compute a kk-edge connectivity certificate for any k=O(n1ϵ)k=O(n^{1-\epsilon}) in time O~(nk+D)\tilde O(\sqrt{nk}+D). Second, we show that by combining the recent distributed expander decomposition technique of [Chang, Pettie, Zhang, SODA'19] with techniques from the sequential deterministic edge connectivity algorithm of [Kawarabayashi, Thorup, STOC'15], we can decompose the network into a sublinear number of clusters with small average diameter and without any mincut separating a cluster (except the `trivial' ones). Finally, by extending the tree packing technique from [Karger STOC'96], we can find the minimum cut in time proportional to the number of components. As a byproduct of this technique, we obtain an O~(n)\tilde O(n)-time algorithm for computing exact minimum cut for weighted graphs.Comment: Accepted at 51st ACM Symposium on Theory of Computing (STOC 2019

    Graphs with large generalized (edge-)connectivity

    Full text link
    The generalized kk-connectivity κk(G)\kappa_k(G) of a graph GG, introduced by Hager in 1985, is a nice generalization of the classical connectivity. Recently, as a natural counterpart, we proposed the concept of generalized kk-edge-connectivity λk(G)\lambda_k(G). In this paper, graphs of order nn such that κk(G)=nk21\kappa_k(G)=n-\frac{k}{2}-1 and λk(G)=nk21\lambda_k(G)=n-\frac{k}{2}-1 for even kk are characterized.Comment: 25 pages. arXiv admin note: text overlap with arXiv:1207.183

    On Cyclic Edge-Connectivity of Fullerenes

    Full text link
    A graph is said to be cyclic kk-edge-connected, if at least kk edges must be removed to disconnect it into two components, each containing a cycle. Such a set of kk edges is called a cyclic-kk-edge cutset and it is called a trivial cyclic-kk-edge cutset if at least one of the resulting two components induces a single kk-cycle. It is known that fullerenes, that is, 3-connected cubic planar graphs all of whose faces are pentagons and hexagons, are cyclic 5-edge-connected. In this article it is shown that a fullerene FF containing a nontrivial cyclic-5-edge cutset admits two antipodal pentacaps, that is, two antipodal pentagonal faces whose neighboring faces are also pentagonal. Moreover, it is shown that FF has a Hamilton cycle, and as a consequence at least 152n2015\cdot 2^{\lfloor \frac{n}{20}\rfloor} perfect matchings, where nn is the order of FF.Comment: 11 pages, 9 figure

    Super edge-connectivity and matching preclusion of data center networks

    Full text link
    Edge-connectivity is a classic measure for reliability of a network in the presence of edge failures. kk-restricted edge-connectivity is one of the refined indicators for fault tolerance of large networks. Matching preclusion and conditional matching preclusion are two important measures for the robustness of networks in edge fault scenario. In this paper, we show that the DCell network Dk,nD_{k,n} is super-λ\lambda for k2k\geq2 and n2n\geq2, super-λ2\lambda_2 for k3k\geq3 and n2n\geq2, or k=2k=2 and n=2n=2, and super-λ3\lambda_3 for k4k\geq4 and n3n\geq3. Moreover, as an application of kk-restricted edge-connectivity, we study the matching preclusion number and conditional matching preclusion number, and characterize the corresponding optimal solutions of Dk,nD_{k,n}. In particular, we have shown that D1,nD_{1,n} is isomorphic to the (n,k)(n,k)-star graph Sn+1,2S_{n+1,2} for n2n\geq2.Comment: 20 pages, 1 figur

    The Connectivity and the Harary Index of a Graph

    Full text link
    The Harary index of a graph is defined as the sum of reciprocals of distances between all pairs of vertices of the graph. In this paper we provide an upper bound of the Harary index in terms of the vertex or edge connectivity of a graph. We characterize the unique graph with maximum Harary index among all graphs with given number of cut vertices or vertex connectivity or edge connectivity. In addition we also characterize the extremal graphs with the second maximum Harary index among the graphs with given vertex connectivity
    corecore