523,539 research outputs found

    Scaling Laws and Regime Transitions of Macroturbulence in Dry Atmospheres

    Get PDF
    In simulations of a wide range of circulations with an idealized general circulation model, clear scaling laws of dry atmospheric macroturbulence emerge that are consistent with nonlinear eddy–eddy interactions being weak. The simulations span several decades of eddy energies and include Earth-like circulations and circulations with multiple jets and belts of surface westerlies in each hemisphere. In the simulations, the eddy available potential energy and the barotropic and baroclinic eddy kinetic energy scale linearly with each other, with the ratio of the baroclinic eddy kinetic energy to the barotropic eddy kinetic energy and eddy available potential energy decreasing with increasing planetary radius and rotation rate. Mean values of the meridional eddy flux of surface potential temperature and of the vertically integrated convergence of the meridional eddy flux of zonal momentum generally scale with functions of the eddy energies and the energy-containing eddy length scale, with a few exceptions in simulations with statically near-neutral or neutral extratropical thermal stratifications. Eddy energies scale with the mean available potential energy and with a function of the supercriticality, a measure of the near-surface slope of isentropes. Strongly baroclinic circulations form an extended regime in which eddy energies scale linearly with the mean available potential energy. Mean values of the eddy flux of surface potential temperature and of the vertically integrated eddy momentum flux convergence scale similarly with the mean available potential energy and other mean fields. The scaling laws for the dependence of eddy fields on mean fields exhibit a regime transition between a regime in which the extratropical thermal stratification and tropopause height are controlled by radiation and convection and a regime in which baroclinic entropy fluxes modify the extratropical thermal stratification and tropopause height. At the regime transition, for example, the dependence of the eddy flux of surface potential temperature and the dependence of the vertically integrated eddy momentum flux convergence on mean fields changes -— a result with implications for climate stability and for the general circulation of an atmosphere, including its tropical Hadley circulation

    Eddy current generation enhancement using ferrite for electromagnetic acoustic transduction

    Get PDF
    Eddy currents are generated in an electrically conducting surface as a step in electromagnetic acoustic transduction (EAT). In eddy current testing, wire coils are often wound onto a ferrite core to increase the generated eddy current. With EAT, increased coil inductance is unacceptable as it leads to a reduction in the amplitude of a given frequency of eddy current from a limited voltage source, particularly where the current arises from capacitor discharge. The authors present a method for EAT where ferrite is used to increase the eddy current amplitude without significantly increasing coil inductance or changing the frequency content of the eddy current

    Drawing OWL 2 ontologies with Eddy the editor

    Get PDF
    In this paper we introduce Eddy, a new open-source tool for the graphical editing of OWL~2 ontologies. Eddy is specifically designed for creating ontologies in Graphol, a completely visual ontology language that is equivalent to OWL~2. Thus, in Eddy ontologies are easily drawn as diagrams, rather than written as sets of formulas, as commonly happens in popular ontology design and engineering environments. This makes Eddy particularly suited for usage by people who are more familiar with diagramatic languages for conceptual modeling rather than with typical ontology formalisms, as is often required in non-academic and industrial contexts. Eddy provides intuitive functionalities for specifying Graphol diagrams, guarantees their syntactic correctness, and allows for exporting them in standard OWL 2 syntax. A user evaluation study we conducted shows that Eddy is perceived as an easy and intuitive tool for ontology specification

    Cyclonic cold-core eddy in the eastern North Atlantic. II. Nutients, phytoplankton and bacteriaplankton

    Get PDF
    A cyclonic cold-core eddy in the Northeast Atlantic of about 100 km in diameter at the sea surface was investigated in May 1985, approximately 3 wk after it had separated from the Polar Front. A strong thermocline, which was shallower but more pronounced than in the ambient water, separated a warm surface layer within the eddy from deeper cold water, while horizontal salinity gradients marked the boundary to the ambient water. The cold-core eddy could be distinguished from amblent Northeast Atlantic water in terms of its nutrient chemistry, phytoplankton species distribution and abundance, bacterial numbers and cell size. The surface layer of the eddy was distinct from deeper eddy water, and was characterized by high concentrations of chlorophyll a, total phytoplankton biomass, dinoflagellates and bacteria. At the eddy's margin diatoms were predominant. It is argued that the physical isolation of the eddy surface layer due to the formation of a shallow thermocline led to rapid utilisation of nutrients. This probably enabled the development of a dinoflagellate-dominated phytoplankton population and of organisms capable of heterotrophic regenerative processes

    The use of disjunct eddy sampling methods for the determination of ecosystem level fluxes of trace gases

    Get PDF
    The concept of disjunct eddy sampling (DES) for use in measuring ecosystem-level micrometeorological fluxes is re-examined. The governing equations are discussed as well as other practical considerations and guidelines concerning this sampling method as it is applied to either the disjunct eddy covariance (DEC) or disjunct eddy accumulation (DEA) techniques. A disjunct eddy sampling system was constructed that could either be combined with relatively slow sensors (response time of 2 to 40 s) to measure fluxes using DEC, or could also be used to accumulate samples in stable reservoirs for later laboratory analysis (DEA technique). Both the DEC and DEA modes of this sampler were tested against conventional eddy covariance (EC) for fluxes of either CO2 (DEC) or isoprene (DEA). Good agreement in both modes was observed relative to the EC systems. However, the uncertainty in a single DEA flux measurement was considerable (40%) due to both the reduced statistical sampling and the analytical precision of the concentration difference measurements. We have also re-investigated the effects of nonzero mean vertical wind velocity on accumulation techniques as it relates to our DEA measurements. Despite the higher uncertainty, disjunct eddy sampling can provide an alternative technique to eddy covariance for determining ecosystem-level fluxes for species where fast sensors do not currently exist

    A barotropic model of eddy saturation

    Full text link
    "Eddy saturation" refers to a regime in which the total volume transport of an oceanic current is insensitive to the wind stress strength. Baroclinicity is currently believed to be key to the development of an eddy-saturated state. In this paper, it is shown that eddy saturation can also occur in a purely barotropic flow over topography, without baroclinicity. Thus, eddy saturation is a fundamental property of barotropic dynamics above topography. It is demonstrated that the main factor controlling the appearance or not of eddy-saturated states in the barotropic setting is the structure of geostrophic contours, that is the contours of f/Hf/H of the ratio of the Coriolis parameter to the ocean's depth. Eddy-saturated states occur when the geostrophic contours are open, that is when the geostrophic contours span the whole zonal extent of the domain. This minimal requirement for eddy-saturated states is demonstrated using numerical integrations of a single-layer quasi-geostrophic flow over two different topographies characterized by either open or closed geostrophic contours with parameter values loosely inspired by the Southern Ocean. In this setting, transient eddies are produced through a barotropic-topographic instability that occurs due tot the interaction of the large-scale zonal flow with the topography. Through the study of this barotropic-topographic instability insight is gained on how eddy-saturated states are established.Comment: 14 pages, 8 figures, submitted to the Journal of Physical Oceanograph

    Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific.

    Get PDF
    While modelling studies suggest that mesoscale eddies strengthen the subduction of mode waters, this eddy effect has never been observed in the field. Here we report results from a field campaign from March 2014 that captured the eddy effects on mode-water subduction south of the Kuroshio Extension east of Japan. The experiment deployed 17 Argo floats in an anticyclonic eddy (AC) with enhanced daily sampling. Analysis of over 3,000 hydrographic profiles following the AC reveals that potential vorticity and apparent oxygen utilization distributions are asymmetric outside the AC core, with enhanced subduction near the southeastern rim of the AC. There, the southward eddy flow advects newly ventilated mode water from the north into the main thermocline. Our results show that subduction by eddy lateral advection is comparable in magnitude to that by the mean flow--an effect that needs to be better represented in climate models

    The response of Southern Ocean eddies to increased midlatitude westerlies: a non-eddy resolving model study

    Get PDF
    The midlatitude westerlies of the southern hemisphere have intensified since the 1970s. Non-eddy resolving general circulation models respond to such wind intensification with steeper isopycnals, a faster Antarctic Circumpolar Current (ACC), and a stronger Atlantic Meridional Overturning Circulation (AMOC). However, hydrographic observations show little change in the slope of the Southern Ocean isopycnals over the past 40 years. This insensitivity seems to result from a compensating mechanism whereby an initial increase in the slope of the isopycnals causes eddy activity to intensify and forces the isopycnal slopes down. Climate models do not yet resolve ocean eddies, and the eddy parameterizations included in them do not capture well the compensation mechanism mentioned above. We present simulations with a non-eddy resolving model incorporating an eddy parameterization in which eddy compensation is greatly enhanced by the use of a non-constant, spatially varying thickness diffusivity. The sensitivity of the simulated ACC and AMOC to increased southern hemisphere westerlies is greatly reduced compared to simulations using constant and uniform diffusivitie
    corecore