537 research outputs found

    Auditory pontine grey

    Get PDF

    Wireless recording of the calls of Rousettus aegyptiacus and their reproduction using electrostatic transducers

    Get PDF
    Bats are capable of imaging their surroundings in great detail using echolocation. To apply similar methods to human engineering systems requires the capability to measure and recreate the signals used, and to understand the processing applied to returning echoes. In this work, the emitted and reflected echolocation signals of Rousettus aegyptiacus are recorded while the bat is in flight, using a wireless sensor mounted on the bat. The sensor is designed to replicate the acoustic gain control which bats are known to use, applying a gain to returning echoes that is dependent on the incurred time delay. Employing this technique allows emitted and reflected echolocation calls, which have a wide dynamic range, to be recorded. The recorded echoes demonstrate the complexity of environment reconstruction using echolocation. The sensor is also used to make accurate recordings of the emitted calls, and these calls are recreated in the laboratory using custom-built wideband electrostatic transducers, allied with a spectral equalization technique. This technique is further demonstrated by recreating multi-harmonic bioinspired FM chirps. The ability to record and accurately synthesize echolocation calls enables the exploitation of biological signals in human engineering systems for sonar, materials characterization and imaging

    Wind turbines and bat mortality: interactions of bat echolocation pulses with moving turbine rotor blades.

    Get PDF
    Wind power is a rapidly growing energy technology, popular for being a clean, reliable and cost-efficient renewable energy source. However, recently concern has been growing over the impact of wind turbines on flying wildlife, with both birds and bats found dead around turbine bases and observed collisions with moving turbine rotors. This phenomenon is widespread and has received enough attention to warrant investigation into how and why these collisions occur. In this paper we investigate the acoustic interaction of bats with wind turbines, in particular the interpretation of reflected sound pulses (echolocation) used by bats to navigate. This paper focuses on the effects of moving turbine rotor blades on reflected acoustic pulses, analogous to what might be presented to an echolocating bat approaching an operational turbine at rotor height. High frequency, simulated FM bat pulses were used to assess reflected echo properties from microturbines (experimentally and in simulation) in order to investigate what interaction rotor movements had with incoming pulses and the potential consequences for an echolocating bat near a moving wind turbine

    Evolutionary origins of ultrasonic hearing and laryngeal echolocation in bats inferred from morphological analyses of the inner ear

    Get PDF
    PMCID: PMC3598973This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Dynamic Echo Information Guides Flight in the Big Brown Bat

    Get PDF
    Animals rely on sensory feedback from their environment to guide locomotion. For instance, visually guided animals use patterns of optic flow to control their velocity and to estimate their distance to objects (e.g. Srinivasan et al. 1991, 1996). In this study, we investigated how acoustic information guides locomotion of animals that use hearing as a primary sensory modality to orient and navigate in the dark, where visual information is unavailable. We studied flight and echolocation behaviors of big brown bats as they flew under infrared illumination through a corridor with walls constructed from a series of individual vertical wooden poles. The spacing between poles on opposite walls of the corridor was experimentally manipulated to create dense/sparse and balanced/imbalanced spatial structure. The bats’ flight trajectories and echolocation signals were recorded with high-speed infrared motion-capture cameras and ultrasound microphones, respectively. As bats flew through the corridor, successive biosonar emissions returned cascades of echoes from the walls of the corridor. The bats flew through the center of the corridor when the pole spacing on opposite walls was balanced and closer to the side with wider pole spacing when opposite walls had an imbalanced density. Moreover, bats produced shorter duration echolocation calls when they flew through corridors with smaller spacing between poles, suggesting that clutter density influences features of the bat’s sonar signals. Flight speed and echolocation call rate did not, however, vary with dense and sparse spacing between the poles forming the corridor walls. Overall, these data demonstrate that bats adapt their flight and echolocation behavior dynamically when flying through acoustically complex environments

    Size constancy in bat biosonar?

    Get PDF
    Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed "size constancy". It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the 'sonar aperture', i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats

    Ontogeny of sounds in the echolocating bat Hipposideros speoris

    Get PDF
    1. Young Hipposideros speoris emit multiharmonic sounds in groups of three to four notes. Newborns emit a relatively uniform pattern of FM- and FM/CF/FM-sounds. From ten days of age onwards the initial sound (first note) of a group is a FM-sound whereas the successive ones are CF/FM-sounds of consistently higher frequencies. At prevolant and volant stages of the bat's development most of the sound energy is concentrated in the second harmonic which is raised to the frequency range of the adults' CF/FM-sounds (127-138 kHz). Subsequently other harmonics disappear. 2. Harmonic components are suppressed or filtered out when they fall in a frequency range of approximately 65-75 kHz. This was found for bats of different ages regardless which fundamental frequency the suppressed harmonic components corresponded to, indicating a mechanical filtering process. These measurements coincide with the absence of the first harmonics in the same frequency range in the sounds of adults. 3. Temporal sound emission patterns were measured for bats of different ages. There was an increase in sound duration and an increase in the number of sounds (notes) per group as the bat matured to adulthood. 4. The sound emission of juveniles aids mothers in finding their young ones. Mothers located their infants even when the juveniles were displaced far from where they were left behind by their mothers. Behavioral experiments under both natural and captive conditions showed that the sound emission of young ones attracts mothers but do not give sufficient cues to allow the mother to discriminate their own from a group of young. 5. The ontogeny of the two types of sounds (CF/FM and complex harmonic FM) of adult Hipposideros speoris is discussed and compared with the vocalisations of other bat species

    Spectral and temporal gating mechanisms enhance the clutter rejection in the echolocating bat, Rhinolophus rouxi

    Get PDF
    Doppler shift compensation behaviour in horseshoe bats, Rhinolophus rouxi, was used to test the interference of pure tones and narrow band noise with compensation performance. The distortions in Doppler shift compensation to sinusoidally frequency shifted echoes (modulation frequency: 0.1 Hz, maximum frequency shift: 3 kHz) consisted of a reduced compensation amplitude and/or a shift of the emitted frequency to lower frequencies (Fig. 1). Pure tones at frequencies between 200 and 900 Hz above the bat's resting frequency (RF) disturbed the Doppler shift compensation, with a maximum of intererence between 400 and 550 Hz (Fig. 2). Minimum duration of pure tones for interference was 20 ms and durations above 40 ms were most effective (Fig. 3). Interfering pure tones arriving later than about 10 ms after the onset of the echolocation call showed markedly reduced interference (Fig. 4). Doppler shift compensation was affected by pure tones at the optimum interfering frequency with sound pressure levels down to –48 dB rel the intensity level of the emitted call (Figs. 5, 6). Narrow bandwidth noise (bandwidth from ± 100 Hz to ± 800 Hz) disturbed Doppler shift compensation at carrier frequencies between –250 Hz below and 800 Hz above RF with a maximum of interference between 250 and 500 Hz above resting frequency (Fig. 7). The duration and delay of the noise had similar influences on interference with Doppler shift compensation as did pure tones (Figs. 8, 9). Intensity dependence for noise interference was more variable than for pure tones (-32 dB to -45 dB rel emitted sound pressure level, Fig. 10). The temporal and spectral gating in Doppler shift compensation behaviour is discussed as an effective mechanism for clutter rejection by improving the processing of frequency and amplitude transients in the echoes of horseshoe bats

    Echolocating Bats Use a Nearly Time-Optimal Strategy to Intercept Prey

    Get PDF
    Acquisition of food in many animal species depends on the pursuit and capture of moving prey. Among modern humans, the pursuit and interception of moving targets plays a central role in a variety of sports, such as tennis, football, Frisbee, and baseball. Studies of target pursuit in animals, ranging from dragonflies to fish and dogs to humans, have suggested that they all use a constant bearing (CB) strategy to pursue prey or other moving targets. CB is best known as the interception strategy employed by baseball outfielders to catch ballistic fly balls. CB is a time-optimal solution to catch targets moving along a straight line, or in a predictable fashion—such as a ballistic baseball, or a piece of food sinking in water. Many animals, however, have to capture prey that may make evasive and unpredictable maneuvers. Is CB an optimum solution to pursuing erratically moving targets? Do animals faced with such erratic prey also use CB? In this paper, we address these questions by studying prey capture in an insectivorous echolocating bat. Echolocating bats rely on sonar to pursue and capture flying insects. The bat's prey may emerge from foliage for a brief time, fly in erratic three-dimensional paths before returning to cover. Bats typically take less than one second to detect, localize and capture such insects. We used high speed stereo infra-red videography to study the three dimensional flight paths of the big brown bat, Eptesicus fuscus, as it chased erratically moving insects in a dark laboratory flight room. We quantified the bat's complex pursuit trajectories using a simple delay differential equation. Our analysis of the pursuit trajectories suggests that bats use a constant absolute target direction strategy during pursuit. We show mathematically that, unlike CB, this approach minimizes the time it takes for a pursuer to intercept an unpredictably moving target. Interestingly, the bat's behavior is similar to the interception strategy implemented in some guided missiles. We suggest that the time-optimal strategy adopted by the bat is in response to the evolutionary pressures of having to capture erratic and fast moving insects
    corecore