5,697 research outputs found

    Feature Dynamic Bayesian Networks

    Get PDF
    Feature Markov Decision Processes (PhiMDPs) are well-suited for learning agents in general environments. Nevertheless, unstructured (Phi)MDPs are limited to relatively simple environments. Structured MDPs like Dynamic Bayesian Networks (DBNs) are used for large-scale real-world problems. In this article I extend PhiMDP to PhiDBN. The primary contribution is to derive a cost criterion that allows to automatically extract the most relevant features from the environment, leading to the "best" DBN representation. I discuss all building blocks required for a complete general learning algorithm.Comment: 7 page

    Non-stationary continuous dynamic Bayesian networks

    Get PDF

    Identifiability and transportability in dynamic causal networks

    Get PDF
    In this paper we propose a causal analog to the purely observational Dynamic Bayesian Networks, which we call Dynamic Causal Networks. We provide a sound and complete algorithm for identification of Dynamic Causal Networks, namely, for computing the effect of an intervention or experiment, based on passive observations only, whenever possible. We note the existence of two types of confounder variables that affect in substantially different ways the identification procedures, a distinction with no analog in either Dynamic Bayesian Networks or standard causal graphs. We further propose a procedure for the transportability of causal effects in Dynamic Causal Network settings, where the result of causal experiments in a source domain may be used for the identification of causal effects in a target domain.Preprin

    Infinite dynamic bayesian networks

    Get PDF
    We present the infinite dynamic Bayesian network model (iDBN), a nonparametric, factored state-space model that generalizes dynamic Bayesian networks (DBNs). The iDBN can infer every aspect of a DBN: the number of hidden factors, the number of values each factor can take, and (arbitrarily complex) connections and conditionals between factors and observations. In this way, the iDBN generalizes other nonparametric state space models, which until now generally focused on binary hidden nodes and more restricted connection structures. We show how this new prior allows us to find interesting structure in benchmark tests and on two realworld datasets involving weather data and neural information flow networks.Massachusetts Institute of Technology (Hugh Hampton Young Memorial Fund Fellowship)United States. Air Force Office of Scientific Research (AFOSR FA9550-07-1-0075

    A Bayesian Approach to Sparse plus Low rank Network Identification

    Full text link
    We consider the problem of modeling multivariate time series with parsimonious dynamical models which can be represented as sparse dynamic Bayesian networks with few latent nodes. This structure translates into a sparse plus low rank model. In this paper, we propose a Gaussian regression approach to identify such a model
    • …
    corecore