30,921 research outputs found
Soil microbial communities in restored and unrestored coastal dune ecosystems in California
Most restoration projects involving invasive plant eradication tend to focus on plant removal with little consideration given to how these invasives change soil microbial communities. However, soil microorganisms can determine invasibility of habitats and, in turn, be altered by invasives once established, potentially inhibiting native plant establishment. We studied soil microbial communities in coastal dunes with varying invasion intensity and different restoration approaches (herbicide, mechanical excavation) at Point Reyes National Seashore. Overall, we found evidence of a strong link between bacterial and fungal soil communities and the presence of invasives and restoration approach. Heavily invaded sites were characterized by a lower abundance of putatively identified nitrifiers, fermentative bacteria, fungal parasites, and fungal dung saprotrophs and a higher abundance of cellulolytic bacteria and a class of arbuscular mycorrhizal fungi (Archaeosporomycetes). Changes in soil microbiota did not fully dissipate following removal of invasives using herbicide, with exception of reductions in cellulolytic bacteria and Archaeosporomycetes abundance. Mechanical restoration effectively removed both invasives and soil legacy effects by inverting or “flipping” rhizome-contaminated surface soils with soils from below and may have inadvertently induced other adverse effects on soils that impeded reestablishment of native dune plants. Land managers should consider additional measures to counteract lingering legacy effects and/or focus restoration efforts in areas where legacy effects are less pronounced
Factors limiting sand dune restoration in Northwest Beach, Point Pelee National Park, Canada
Known as home to rare species of flora and fauna, and their critical habitats, Northwest beach of Point Pelee National Park has undergone significant ecological and infrastructural changes in the past decades. A number of important management challenges have emerged, including conservation of endangered Five-lined Skink (Plestiodon fasciatus) which inhabit the extensive dune system within the park. This research investigates key factors for sand dune ecosystem restoration in Northwest beach of Point Pelee with particular attention to the conservation of Skink habitat. Random stratified sampling method was used to collect sand and vegetation samples from the disturbed and natural areas. Sand samples were also collected from the sand piles, which is a part of dune restoration process initiated by the Parks Canada.
Three aspects were considered: grain size distribution of dune sediments, vegetation assemblage and character of the dune associated species, land use and land cover change. Grain size distribution indicated that samples from most of the sand piles contained some amounts of clay/silt and pebble sized grains making it unfavourable for wind action, resulting in no significant contribution to dune formation. Most of the sand samples collected along the foredunes and water edge were appropriate for sediment transport. Shannon and Simpson’s Diversity Index was calculated as 1.48 and 0.67 for natural area as compared to 0.71 and 0.35 for the disturbed area, which indicate unfavourable species diversity for dune restoration in disturbed areas.
The research also focused on the spatial and temporal changes in land use and land cover in NW beach area of Point Pelee using aerial photos for 1959, 1977, 2006 and 2015. Different time series of the aerial photos were chosen based on their availability. The Ecological land classification system for Southern Ontario were used to classify the aerial photos for land use and land cover (LULC). LULC classes included Shoreline vegetation, Deciduous thicket, Sand Barren and Dune Type, and Infrastructures (includes Transportation and services) for the entire Northwest Beach area. Segmentation and classification tools was used to classify four different time series of aerial photos.
Grain size distribution and vegetation assemblage for dune associated species were calculated to determine the factors limiting habitat restoration process. Based on the results alternate management strategies for dune restoration in Point Pelee were recommended. The study offers key insights on the importance of timely detection, analysis and visualisation of dynamic changes for habitat restoration and maintaining ecological integrity of the Northwest beach area of Point Pelee
Mechanisms of Surviving Burial: Dune Grass Interspecific Differences Drive Resource Allocation After Sand Deposition
Sand dunes are important geomorphic formations of coastal ecosystems that are critical in protecting human populations that live in coastal areas. Dune formation is driven by ecomorphodynamic interactions between vegetation and sediment deposition. While there has been extensive research on responses of dune grasses to sand burial, there is a knowledge gap in understanding mechanisms of acclimation between similar, coexistent, dune-building grasses such as Ammophila breviligulata (C3), Spartina patens (C4), and Uniola paniculata (C4). Our goal was to determine how physiological mechanisms of acclimation to sand burial vary between species. We hypothesize that (1) in the presence of burial, resource allocation will be predicated on photosynthetic pathway and that we will be able to characterize the C3 species as a root allocator and the C4 species as leaf allocators. We also hypothesize that (2) despite similarities between these species in habitat, growth form, and life history, leaf, root, and whole plant traits will vary between species when burial is not present. Furthermore, when burial is present, the existing variability in physiological strategy will drive species-specific mechanisms of survival. In a greenhouse experiment, we exposed three dune grass species to different burial treatments: 0 cm (control) and a one-time 25-cm burial to mimic sediment deposition during a storm. At the conclusion of our study, we collected a suite of physiological and morphological functional traits. Results showed that Ammophila decreased allocation to aboveground biomass to maintain root biomass, preserving photosynthesis by allocating nitrogen (N) into light-exposed leaves. Conversely, Uniola and Spartina decreased allocation to belowground production to increase elongation and maintain aboveground biomass. Interestingly, we found that species were functionally distinct when burial was absent; however, all species became more similar when treated with burial. In the presence of burial, species utilized functional traits of rapid growth strategy, although mechanisms of change were interspecifically variable
Presence of the “Threatened” \u3ci\u3eTrimerotropis Huroniana\u3c/i\u3e (Orthoptera: Acrididae) in Relation to the Occurrence of Native Dune Plant Species and the Exotic \u3ci\u3eCentaurea Biebersteinii\u3c/i\u3e
Trimerotropis huroniana Wlk. is a “Threatened” species in Michigan and Wisconsin with a distribution limited to open dune systems in the northern Great Lakes region of North America. Pitfall traps were utilized in the Grand Sable Dunes of Pictured Rocks National Lakeshore, MI, along with an herbaceous plant survey, to identify the relationship of T. huroniana with native dune plant species, Ammophila breviligulata Fern. (American beachgrass, Poaceae), Artemisia campestris L. (field sagewort, Asteraceae), and the exotic invasive plant Centaurea biebersteinii DC. [=Centaurea maculosa, spotted knapweed, Lamarck] (Asteraceae). The absence of C. biebersteinii resulted in an increased likelihood of capturing T. huroniana. This was most likely due to the increased likelihood of encountering A. campestris in areas without C. biebersteinii. The occurrence of A. breviligulata was independent of C. biebersteinii presence. A significant positive linear relationship occurred between the percent cover of A. campestris and the traps that captured T. huroniana. There was no significant relationship between A. breviligulata percent cover and the traps that captured T. huroniana. The occurrence and distribution of T. huroniana is closely related to the presence and abundance of A. campestris. Habitat conservation and improvement for T. huroniana should include increases in A. campestris populations through the removal of C. biebersteinii
A survey of selected coastal vegetation communities of Florida
A survey of coastal vegetation around Florida
was conducted during 1973 and 1974. Seventeen sites were selected and sampled
using the transect method to determine species occurrence, relative densities, and
habitat development and structure. Sites were sampled quarterly except where high
tides prevented data gathering. Species occurrence was compared within and
between sites using Sarensen's Index of Similarity (IS,) as a basis for determining
similarity of species inhabiting selected sites. Indices ranged from 4 to 61%, the
former representing only one plant common to two sites. Results show
environmental factors acting upon species alter species composition in seemingly
similar habitats. Instead of the term "community", the term "association" is used to
better reflect the concept of a taxonomically unrelated group of plants occupying a
particular habitat. (Document has 40 pages.
Vegetation restoration plan, New Plymouth Fitzroy to Bell Block coastal walkway extension
In 1999, the New Plymouth District Council began construction of its award winning coastal walkway. Along with providing an area for recreation, this new walk and cycle path serves as an alternate route for commuting along the city away from arterial roads. The New Plymouth District Council is in the process of extending this walkway a further three kilometres from Fitzroy Motor Camp to Ellesmere Avenue, Bell Block. This will encompass Peringa Park, Hickford Park and the Mangati Walkway, with completion expected by mid 2010. As part of this $4.2 million project, the District Council aims to restore the surrounding native duneland vegetation. The Centre for Biodiversity and Ecology Research (University of Waikato) was contracted by the New Plymouth District Council to provide a vegetation restoration plan for the Fitzroy to Bell Block section of the coastal walkway. This report considers the current vegetation of this three km section of the walkway, based on a rapid qualitative assessment undertaken in June, 2010. The target ecosytems Spinifex sandfield, flax-taupata shrubland and coastal forest vegetation types once dominant in the area are described in detail. Restoration recommendations are included to assist in the recreation of these ecosystems, including planting zones, weed control strategies and ongoing monitoring objectives
Two distinct AFLP types in three populations of marram grass (Ammophila arenaria in Wales)
The genetic structure of marram grass populations at coastal and inland locations, 200 m apart, was investigated at three sites by means of amplified fragment length polymorphism (AFLP) DNA markers. We expected a genetic differentiation between coastal and inland populations and more genetic variation in the coastal areas as a result of different events of colonization by different plant materials. An assignment test showed that the sampled Ammophila arenaria could be assigned to two groups based on AFLP data. The spatial distribution of the two AFLP types of A. arenaria varied with sampling location. In two of the three locations, mainly one type (1) was found in the newly formed dunes. This type did also occur further landward, but the second type (2) was preferentially found in inland populations. Genetic diversity was very low and of similar value in both coastal and inland populations. For each site, outlier loci with respect to FST value were identified, which may be indicative of different selection pressures in coastal compared with inland clusters. However, no identical outlier loci were found at all three sites. Possible explanations for the observed difference in distribution of type 1 and 2 populations between coastal and inland sites are discusse
Differential response of barrier island dune grasses to species interactions and burial
Barrier islands are at the forefront of storms and sea-level rise. High disturbance regimes and sediment mobility make these systems sensitive and dynamic. Island foredunes are protective structures against storm-induced overwash that are integrally tied to dune grasses via biogeomorphic feedbacks. Shifts in dune grass dominance could influence dune morphology and susceptibility to overwash, altering island stability. In a glasshouse study, two dune grasses, Ammophila breviligulata and Uniola paniculata, were planted together and subjected to a 20 cm burial to quantify morphological and physiological responses. Burial had positive effects on both plants as indicated by increased electron transport rate and total biomass. Ammophila breviligulata performance declined when planted with U. paniculata. Uniola paniculata was not affected when planted with A. breviligulata but did have higher water use efficiency and nitrogen use efficiency. Planted in mixture, differential reallocation of biomass occurred between species potentially altering resource acquisition further. As U. paniculata migrates into A. breviligulata dominated habitat and A. breviligulata performance diminishes, biotic interactions between these and other species may affect dune formation and community structure. Our study emphasizes the importance of studying biotic interactions alongside naturally occurring abiotic drivers
28 years of vegetation change (1978 – 2006) in a calcareous coastal dune system
Changes in vegetation structure and composition over a 28 year period (1978–2006) following removal of human-induced disturbances, were examined in a calcareous coastal dune system in Point Nepean National Park (380 19’S, 1440 41’E) in south-eastern Victoria, Australia. In the early 1980s human habitation of Point Nepean was abandoned and disturbance regimes such as burning, slashing and land clearing were altered or removed, providing an opportunity to study the recovery of disturbed coastal vegetation. Broad-scale and community-level vegetation changes were assessed by comparing quadrat and GIS mapping data from 1978 with data collected in 2006. Results indicate a change in broad vegetation patterns; shrubland vegetation has replaced hind dune grasslands and disturbed areas and there has been a decrease in exposed coastal areas (such as blowouts, dunes and cliffs), and an increase in woody native species and highly invasive woody weeds. The changes highlight the importance of incorporating vegetation states in planning management actions in dynamic coastal vegetation
Species biology and potential for controlling four exotic plants (Ammophila arenaria, Carpobrotus edulis, Cortaderia jubata and Gasoul crystallinum) on Vandenberg Air Force Base, California
Invasive exotic plants can displace native flora and modify community and ecosystem structure and function. Ammophila arenaria, Corpobrotus edulis, Cortaderia jubata, and Gasoul crystallinum are invasive plants present on Vandenberg Air Force Base, California, designated for study by the Environmental Task Force because of the perceived threat they represent to the native flora. Each plant's native habitat, how they came to be at Vandenberg, their propagation, and how they can be controlled is discussed
- …
