3 research outputs found

    Advances in Discrete Applied Mathematics and Graph Theory

    Get PDF
    The present reprint contains twelve papers published in the Special Issue “Advances in Discrete Applied Mathematics and Graph Theory, 2021” of the MDPI Mathematics journal, which cover a wide range of topics connected to the theory and applications of Graph Theory and Discrete Applied Mathematics. The focus of the majority of papers is on recent advances in graph theory and applications in chemical graph theory. In particular, the topics studied include bipartite and multipartite Ramsey numbers, graph coloring and chromatic numbers, several varieties of domination (Double Roman, Quasi-Total Roman, Total 3-Roman) and two graph indices of interest in chemical graph theory (Sombor index, generalized ABC index), as well as hyperspaces of graphs and local inclusive distance vertex irregular graphs

    Total Coloring of Dumbbell Maximal Planar Graphs

    No full text
    The Total Coloring Conjecture (TCC) states that every simple graph G is totally (Δ+2)-colorable, where Δ denotes the maximum degree of G. In this paper, we prove that TCC holds for dumbbell maximal planar graphs. Especially, we divide the dumbbell maximal planar graphs into three categories according to the maximum degree: J9, I-dumbbell maximal planar graphs and II-dumbbell maximal planar graphs. We give the necessary and sufficient condition for I-dumbbell maximal planar graphs, and prove that any I-dumbbell maximal planar graph is totally 8-colorable. Moreover, a linear time algorithm is proposed to compute a total (Δ+2)-coloring for any I-dumbbell maximal planar graph

    Total Coloring of Dumbbell Maximal Planar Graphs

    No full text
    The Total Coloring Conjecture (TCC) states that every simple graph G is totally (Δ+2)-colorable, where Δ denotes the maximum degree of G. In this paper, we prove that TCC holds for dumbbell maximal planar graphs. Especially, we divide the dumbbell maximal planar graphs into three categories according to the maximum degree: J9, I-dumbbell maximal planar graphs and II-dumbbell maximal planar graphs. We give the necessary and sufficient condition for I-dumbbell maximal planar graphs, and prove that any I-dumbbell maximal planar graph is totally 8-colorable. Moreover, a linear time algorithm is proposed to compute a total (Δ+2)-coloring for any I-dumbbell maximal planar graph
    corecore