32 research outputs found

    EFFECTS OF SHOD AND BAREFOOT CONDITIONS ON MEDIAL LONGITUDINAL ARCH ANGLE DURING RUNNING

    Get PDF
    The structure of the medial longitudinal arch (MLA) affects the spring-like function of the foot and is crucial to running performance. The purpose of this study was to investigate the differences in the MLA angle between barefoot and shod conditions by using a high-speed dual fluoroscopic imaging system (DFIS). Computed tomography was taken of each participant’s right foot for the construction of 3D models and local coordinate systems. Fifteen participants ran with or without running shoes at 3 m/s±5% speed. We recorded foot kinematics using DFIS. After the process of 3D-2D registration, MLA angles were calculated. Compared to barefoot, wearing shoes 1) decreased the initial landing MLA angle, maximum MLA angle and range of motion of the MLA angle (p \u3c 0.05); 2) decreased the MLA angles during 0%-70% of the stance phase (p \u3c 0.05). It suggests that shoes limit the MLA compression and recoil and its spring-like function

    Altered In Vivo Knee Kinematics and Lateral Compartment Contact Position During the Single-Leg Lunge After Medial Unicompartmental Knee Arthroplasty

    Full text link
    BACKGROUND Osteoarthritis (OA) progression in the lateral compartment is the most common reason for revision after medial unicompartmental knee arthroplasty (UKA). Altered contact kinematics in the lateral compartment may be related to the pathogenesis of OA. PURPOSE To quantify the in vivo 6 degrees of freedom (6-DOF) knee kinematics and contact points in the lateral compartment during a single-leg lunge in knees after medial UKA and compare them with the contralateral native knee. STUDY DESIGN Descriptive laboratory study. METHODS Included were 13 patients (3 male, 10 female; mean age, 64.7 ± 6.2 years) who had undergone unilateral medial UKA. All patients underwent computed tomography preoperatively and 6 months postoperatively, and bilateral knee posture was tracked using dual fluoroscopic imaging system during a single-leg deep lunge to evaluate the in vivo 6-DOF kinematics. The closest points between the surface models of the femoral condyle and the tibial plateau were determined to locate the lateral compartment contact positions. The Wilcoxon signed-rank test was used to compare knee kinematics and lateral contact position between the UKA and native knees. Spearman correlation was used to test the associations of bilateral 6-DOF range difference and lateral compartment contact excursion difference with bilateral limb alignment difference and functional scores. RESULTS Compared with native knees, UKA knees had an increased anterior femoral translation of 2.0 ± 0.3 mm during the entire lunge (P < .05). The lateral contact position in UKA knees was located 2.0 ± 0.9 mm posteriorly and with 3.3 ± 4.0 mm less range of contact excursion than native knees (P < .05). Decreased range of lateral compartment contact excursion in the anterior-posterior direction was significantly associated with increased hip-knee-ankle angle in the UKA side (P < .05). CONCLUSION The current study revealed altered knee 6-DOF kinematics and the reduced contact excursion range during single-leg lunge after unilateral medial UKA. CLINICAL RELEVANCE The altered contact kinematics and reduced range of contact excursion in UKA knees could lead to excessive cumulative articular surface contact stress, which is implicated in the pathogenesis of OA

    New fluoroscopic imaging technique for investigation of 6DOF knee kinematics during treadmill gait

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>This report presents a new imaging technique for non-invasive study of six degrees of freedom (DOF) knee kinematics during treadmill gait.</p> <p>Materials and methods</p> <p>A treadmill was integrated into a dual fluoroscopic imaging system (DFIS) to formulate a gait analysis system. To demonstrate the application of the system, a healthy subject walked on the treadmill at four different speeds (1.5, 2.0, 2.5 and 3.0 MPH) while the DFIS captured the knee motion during three strides under each speed. Characters of knee joint motion were analyzed in 6DOF during the treadmill walking.</p> <p>Results</p> <p>The speed of the knee motion was lower than that of the treadmill. Flexion amplitudes increased with increasing walking speed. Motion patterns in other DOF were not affected by increase in walking speed. The motion character was repeatable under each treadmill speed.</p> <p>Conclusion</p> <p>The presented technique can be used to accurately measure the 6DOF knee kinematics at normal walking speeds.</p

    Investigation of in-vivo total knee arthroplasty biomechanics using a dual fluoroscopic imaging system

    Get PDF
    Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.Includes bibliographical references (p. 240-271).While contempary total knee arthroplasty has been successful in improving the quality of life for those suffering from severe osteoarthritis, the function of these patients has not reached normal levels for their age group. Thus, there is an increasing need to improve total knee arthroplasty techniques to allow patients to function normally. We currently have limited knowledge about how current knee arthroplasties behave in-vivo, but this information could be pivotal in designing new implants and surgical techniques. Therefore, the objective of this work was to develop the Dual Fluoroscopic Imaging System, a non-invasive imaging system capable of measuring in-vivo knee kinematics in all degrees of freedom. This system was used to investigate factors that may affect patient function after total knee arthroplasty. The feasibility of using kinematic data obtained using this system to analyze wear of the polyethylene insert was also explored The system was shown to be repeatable and accurate in determining the pose of the TKA components in all degrees of freedom. Six degree-of-freedom kinematics and articular contact motion were measured in-vivo. Data was obtained for patients with two typical classes of TKA, cruciate-retaining and cruciate-substituting, and the function of conventional implants was compared to that of more recent high flexion designs. In general, no differences were detected between these groups. Further, no factors such as age, weight, PCL management, or kinematics, were found to correlate with flexion capability. Future studies should investigate changes in knee structures from the preoperative state to the postoperative state. Preliminary estimates of polyethylene stresses suggested great potential in using the Dual Fluoroscopic Imaging System in developing a model of in-vivo polyethylene wear.by Jeremy F. Suggs.Sc.D

    Knee joint kinematics before and after body weight change

    Full text link
    Obesity is a well-defined mechanical factor for osteoarthritis (OA). More than one-third of adults in the United States are obese, and one in three obese adults has arthritis. In obese individuals, knee pain is highly prevalent and is often thought to be the first symptom of knee OA. In the pathomechanics of knee OA, altered kinematics and contact location in the knee joint are potent contributors to OA initiation and progression. However, such kinematics and cartilage contact location in obese individuals, and how the knee joint responses to excess load due to obesity are not clear and understudied, mainly limited by the instrumentations. Therefore, we conducted a series of dissertation studies to investigate the effect of weight on the knee joint kinematics in six degrees of freedom (6DOF) and cartilage contact location using a fluoroscopic imaging system with magnetic resonance-based morphological models. In Study 1, the 6DOF kinematic analysis showed that obese individuals with knee pain walked with a reduced range of flexion-extension motion and a reduced medial-lateral translation compared with non-obese controls. In Study 2, the cartilage contact analysis showed that obese individuals experienced different contact location on both the tibial and femoral cartilage surfaces during walking when compared with a healthy group, while pain had a minimal effect on the cartilage contact location. In Study 3, we followed up with the obese individuals in Study 1 and the kinematic analysis showed that the change in range of the flexion-extension and adduction-abduction motion during gait were associated with the change in body weight; however, knee pain was not associated with the kinematic change. In conclusion, this series of dissertation studies suggests that the kinematics of the knee in obese individuals with knee pain was modifiable through weight loss. Weight management should be addressed more than controlling for pain in obese individuals with pain, as pain management might not able to restore the contact locations.2020-07-06T00:00:00

    Well-Placed Acetabular Component Oriented Outside the Safe Zone During Weight-Bearing Daily Activities

    Get PDF
    Background: A comprehensive and thorough understanding of functional acetabular component orientation is essential for optimizing the clinical outcome after total hip arthroplasty (THA). This study aimed to quantify the functional acetabular anteversion and inclination of unilateral THA patients during walking and static standing and to determine whether the functional acetabular orientation falls within the Lewinnek safe zone.Methods: Seventeen patients with unilateral THA received a CT scan and dual fluoroscopic imaging during level walking and static standing to evaluate in vivo hip kinematics. The pelvic functional coordinate system of the 3D CT-based computer model was defined by the line of gravity and anterior pelvic plane (APP) to measure functional acetabular anteversion and inclination in different postures. The Lewinnek safe zone was used to determine the acetabular malposition during functional activities.Results: The THA side demonstrated an average of 10.1° (± 9.6°, range –7.5° to 29.9°) larger functional anteversion and 16.0° (± 9.2°, range –7.2° to 29.9°) smaller inclination than native hips during level walking. Functional acetabular anteversion in the THA side during level walking and static standing was significantly larger than anatomical measurements (p &lt; 0.05). Acetabular orientation of most well-placed THA components anatomically in the Lewinnek safe zone fell outside the safe zone during more than half of the gait cycle and static standing.Conclusion: The current study revealed that an anatomically well-placed acetabular cup does not guarantee a well-functional orientation during daily activities. The in vivo mechanical performance and loading conditions of the THA component during other weight-bearing activities should be investigated in further studies

    Development of an instrumented customizable total knee prosthesis for experimental tests.

    Get PDF
    Total knee arthroplasty (TKA) has revolutionized the life of millions of patients and it is the most efficient treatment in cases of osteoarthritis. The increase in life expectancy has lowered the average age of the patient, which requires a more enduring and performing prosthesis. To improve the design of implants and satisfying the patient's needs, a deep understanding of the knee Biomechanics is needed. To overcome the uncertainties of numerical models, recently instrumented knee prostheses are spreading. The aim of the thesis was to design and manifacture a new prototype of instrumented implant, able to measure kinetics and kinematics (in terms of medial and lateral forces and patellofemoral forces) of different interchangeable designs of prosthesis during experiments tests within a research laboratory, on robotic knee simulator. Unlike previous prototypes it was not aimed for industrial applications, but purely focusing on research. After a careful study of the literature, and a preliminary analytic study, the device was created modifying the structure of a commercial prosthesis and transforming it in a load cell. For monitoring the kinematics of the femoral component a three-layers, piezoelettric position sensor was manifactured using a Velostat foil. This sensor has responded well to pilot test. Once completed, such device can be used to validate existing numerical models of the knee and of TKA and create new ones, more accurate.It can lead to refinement of surgical techniques, to enhancement of prosthetic designs and, once validated, and if properly modified, it can be used also intraoperatively

    Effects of different habitual foot strike patterns on in vivo kinematics of the first metatarsophalangeal joint during shod running—a statistical parametric mapping study

    Get PDF
    Existing studies on the biomechanical characteristics of the first metatarsophalangeal joint (1st MTPJ) during shod running are limited to sagittal plane assessment and rely on skin marker motion capture, which can be affected by shoes wrapping around the 1st MTPJ and may lead to inaccurate results. This study aims to investigate the in vivo effects of different habitual foot strike patterns (FSP) on the six degrees of freedom (6DOF) values of the 1st MTPJ under shod condition by utilizing a dual-fluoroscopic imaging system (DFIS). Long-distance male runners with habitual forefoot strike (FFS group, n = 15) and rearfoot strike (RFS group, n = 15) patterns were recruited. All participants underwent foot computed tomography (CT) scan to generate 3D models of their foot. The 6DOF kinematics of the 1st MTPJ were collected using a DFIS at 100 Hz when participants performed their habitual FSP under shod conditions. Independent t-tests and one-dimensional statistical parametric mapping (1-d SPM) were employed to analyze the differences between the FFS and RFS groups’ 1st MTPJ 6DOF kinematic values during the stance phase. FFS exhibited greater superior translation (3.5–4.9 mm, p = 0.07) during 51%–82% of the stance and higher extension angle (8.4°–10.1°, p = 0.031) during 65%–75% of the stance in the 1st MTPJ than RFS. Meanwhile, FFS exhibited greater maximum superior translation (+3.2 mm, p = 0.022), maximum valgus angle (+6.1°, p = 0.048) and varus–valgus range of motion (ROM) (+6.5°, p = 0.005) in the 1st MTPJ during stance. The greater extension angle of the 1st MTPJ in the late stance suggested that running with FFS may enhance the propulsive effect. However, the higher maximum valgus angle and the ROM of varus–valgus in FFS may potentially lead to the development of hallux valgus

    Assessment of Normal Knee Kinematics Using High-Speed Stereo-Radiography System

    Get PDF
    The measurement of dynamic joint kinematics in vivo is important in order to understand the effects of joint injuries and diseases as well as for evaluating the treatment effectiveness. Quantification of knee motion is essential for assessment of joint function for diagnosis of pathology, such as tracking and progression of osteoarthritis and evaluation of outcome following conservative or surgical treatment. Total knee arthroplasty (TKA) is an invasive treatment for arthritic pain and functional disability and it is used for deformed joint replacement with implants in order to restore joint alignment. It is important to describe knee kinematics in healthy individuals for comparison in diagnosis of pathology and understanding treatment to restore normal function. However measuring the in vivo dynamic biomechanics in 6 degrees of freedom with an accuracy that is acceptable has been shown to be technically challenging. Skin marker based methods, commonly used in human movement analysis, are still prone to large errors produced by soft tissue artifacts. Thus, great deal of research has been done to obtain more accurate data of the knee joint by using other measuring techniques like dual plane fluoroscopy. The goal of this thesis is to use high-speed stereo radiography (HSSR) system for measuring joint kinematics in healthy older adults performing common movements of daily living such as straight walking and during higher demand activities of pivoting and step descending in order to establish a useful baseline for the envelope of healthy knee motion for subsequent comparison with patients with TKA. Prior to data collection, validation and calibration techniques as well as dose estimations were mandatory for the successful accomplishment of this study
    corecore