98,715 research outputs found

    Genotypic variation of dormancy in wheat (Triticum aestivum L.) : a thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Science, Department of Plant Science, Massey University, Palmerston North, New Zealand

    Get PDF
    Embryo dormancy and α - amylase dormancy are desirable in wheat to minimise pre-harvest sprouting damage. The current work focuses on the embryo and graincoat colour. A loose association between grain redness and dormancy in wheat is common knowledge. But the causal relationships between colour and dormancy are not clear and need to account for dormancy variability in the gene - pool. The study's working hypothesis was that colour formation triggers hypo - oxia synthesis of ABA (vs. gibberellins) which triggers dormancy if the timing with embryo development is optimal. Development profiles for eight attributes (including dormancy) of grain were investigated from five white and five red wheat cultivars representing a wide genetic base. Tagged ears were sampled from pollination to harvest ripeness (days after pollination to 12.5% moisture). All the white - grained cultivars did not have dormancy at harvest ripeness, and there was considerable variation of dormancy levels in the red - grained cultivars. The total-grain abscisic acid was not associated with redness nor dormancy, and no evidence of ABA sensitivity could be found in cv. Brevor. The failure to detect the putative dormancy of cvs. Brevor and Kenya 321 was probably due to fine detail employed in the present work, but may also have been due to the single ripening environment used. Base α amylase and flavanol levels did not contribute to the variation in embryo dormancy. Gibberellic acid insensitivity in the Rht/Gai genotypes was not expressed in terms of embryo dormancy. Examination of the profiles suggested that redness was necessary to permit dormancy, but that dormancy timing was independent of colour. This led to varying levels of dormancy at harvest ripeness. No association with ABA was evident, nor with colour precursor. However timing and duration of polymerisation (flavanol) development (hypo-oxia) did show a weak association with dormancy delay and level. The new hypothesis suggests that colour formation hypo-oxia permits dormancy, but that its timing is flexible with respect to harvest ripeness. Broader genetic control (other than the Redness gene) is indicated. Heritability estimates indicated that timings, rather than levels, are more useful selection criteria. This included embryo dormancy attributes, colour, and harvest ripeness. For plant breeders it suggested that grain sampled at harvest ripeness could be selected for dormancy as measured in this study

    To germinate or not to germinate : a question of dormancy relief not germination stimulation

    Get PDF
    A common understanding of the control of germination through dormancy is essential for effective communication between seed scientists whether they are ecologists, physiologists or molecular biologists. Vleeshouwers et al. (1995) realized that barriers between disciplines limited progress and through insightful conclusions in their paper ‘Redefining seed dormancy: an attempt to integrate physiology and ecology’, they did much to overcome these barriers at that time. However, times move on, understanding develops, and now there is a case for ‘Redefining seed dormancy as an integration of physiology, ecology and molecular biology’. Finch-Savage and Leubner-Metzger (2006) had this in mind when they extended and re-interpreted the definition of dormancy proposed by Vleeshouwers et al. (1995), by considering dormancy as a having a number of layers that must be removed, with the final layer of dormancy being synonymous with the stimulation/induction of germination

    Stratification requirements for seed dormancy alleviation in a wetland weed.

    Get PDF
    Echinochloaoryzicola(syn.E. phyllopogon) is an exotic weed of California rice paddies that has evolved resistance to multiple herbicides. Elimination of seedlingsthroughcertain weed control methods can limit the spread of this weed, but is contingent on accurate predictions of germination and emergence timing, which are influenced by seed dormancy levels.In summer annuals, dormancy can often be relieved through stratification, a period of prolonged exposure to cold and moist conditions.We used population-based threshold models to quantify the effects of stratification on seed germination of four E. Oryzicola populations at a range of water potential (Ψ) and oxygen levels. We also determined how stratification temperatures, moisture levels and durations contributed to dormancy release. Stratification released dormancy by decreasing base Ψ and hydrotimerequired for germination and by eliminating any germination sensitivity to oxygen. Stratification also increased average germination rates (GR), which were used as a proxy for relative dormancy levels. Alternating temperatures nearly doubled GR in all populations, indicating that seeds could be partially dormant despite achieving high final germination percentages. Stratification at Ψ = 0 MPa increased GR compared to stratification at lower water potentials, demonstrating that Ψ contributed to regulating dormancy release. Maximum GR occurred after 2-4 weeks of stratification at 0 MPa; GR were often more rapid for herbicide-resistant than for herbicide-susceptible seeds, implying greater dormancy in the latter. Manipulation of field conditions to promote dormancy alleviation of E. oryzicola seeds might improve the rate and uniformity of germination for seed bank depletion through seedling weed control. Our results suggest field soil saturation in winter would contribute towards E. oryzicola dormancy release and decrease the time to seedling emergence

    Selection Mapping Identifies Loci Underpinning Autumn Dormancy in Alfalfa (Medicago sativa).

    Get PDF
    Autumn dormancy in alfalfa (Medicago sativa) is associated with agronomically important traits including regrowth rate, maturity, and winter survival. Historical recurrent selection experiments have been able to manipulate the dormancy response. We hypothesized that artificial selection for dormancy phenotypes in these experiments had altered allele frequencies of dormancy-related genes. Here, we follow this hypothesis and analyze allele frequency changes using genome-wide polymorphisms in the pre- and postselection populations from one historical selection experiment. We screened the nondormant cultivar CUF 101 and populations developed by three cycles of recurrent phenotypic selection for taller and shorter plants in autumn with markers derived from genotyping-by-sequencing (GBS). We validated the robustness of our GBS-derived allele frequency estimates using an empirical approach. Our results suggest that selection mapping is a powerful means of identifying genomic regions associated with traits, and that it can be exploited to provide regions on which to focus further mapping and cloning projects

    Improvement of seed germination of Fagus orientalis Lipsky

    Get PDF
    This thesis was seeking two main approaches for improvement of seed germination of oriental beech, a timber producing species in Hyrcanian forests in northern Iran. Germination behavior of beechnuts was enhanced either by decreasing the dormancy breakage period, or by increasing seed lot quality. A simple grading based on the weight of beechnuts, before exposing the dormant nuts to dormancy breaking conditions, significantly increased germination capacity of heavy class beechnuts, and reduced the period of dormancy breakage. Almost the same results were obtained by removing the endocarp. Applying alternative chilling temperatures, during dormancy breakage had positive effects on speed of dormancy release. These simple methods can be used with little equipment in forest nurseries and are suggested to be accompanied with more advanced techniques, like restricting moisture content during moist cold stratification period to gain maximum benefit. Previous reports from European beech and the results from the effect of endocarp removal suggest a possible role of other agents in dormancy in oriental beechnuts. Water soluble phenolics extracts from the seed coats, significantly suppress the germination of radish seed. The endocarp may act as a barrier against exudation of these germination inhibitors. The deep embryo dormancy presents problems when assessing the viability of oriental beech nuts. It is therefore possible to test germination performance in semi-dormant nuts to predict the nut viability in this species. A dormant seedlot was stored in sub-chilling conditions for 15 months and a series of germination tests were conducted during the dormancy breakage period of stored and fresh nuts. The results showed that mean germination times for both nut groups were almost the same, but germination capacity was statistically different only for semi-dormant nuts. Non-dormant stored and fresh nuts showed no significant differences, which indicate the complexity of dormancy release in oriental beech nuts. Abscisic acid (ABA) contents of embryonic axes of stored and fresh nuts were measured during the dormancy breakage period, and results indicated a close correlation between ABA levels and increment in germination capacity as dormancy was released. Near infrared spectroscopy (NIRS) combined with partial least squares regression (PLS) were used as rapid and non-destructive methods for discrimination of sound and deteriorated single beechnuts. NIRS-PLS is a promising method for quality improvement of nearly all agricultural products and in this study showed 100% accuracy in separation of viable and non-viable nuts

    Cold treatment breaks dormancy but jeopardizes flower quality in Camellia japonica L.

    Get PDF
    Camellia japonica L. is an evergreen shrub whose cultivars are of great ornamental value. In autumn, after flower bud differentiation, dormancy is initiated. As in many other spring flowering woody ornamentals, winter low temperatures promote dormancy release of both flower and vegetative buds. However, warm spells during late autumn and winter can lead to unfulfilled chilling requirements leading to erratic and delayed flowering. We hypothesized that storing plants at no light and low temperature could favor dormancy breaking and lead to early and synchronized flowering in response to forcing conditions in C. japonica ‘Nuccio’s Pearl’. Plants with fully developed floral primordia were stored at dark, 7∘C, and RH > 90% for up to 8 weeks. To monitor endodormancy release during the storage, we evaluated the content of abscisic acid (ABA) in flower buds and the expression profiles of five putative genes related to dormancy and cold acclimation metabolism in leaves and flower buds. In addition, the expression of four anthocyanin biosynthesis pathway genes was profiled in flower buds to assess the effect of the treatment on flower pigment biosynthesis. At 0, 4, 6, and 8 weeks of cold treatment, 10 plants were transferred to the greenhouse and forced to flower. Forced plant flower qualities and growth were observed. The ABA content and the expression profiles of two dormancy-related genes (CjARP and CjDEH) suggested that dormancy breaking occurred after 6–8 weeks of cold treatment. Overall, plants treated for 6–8 weeks showed earlier vegetative sprouting, enhanced, and homogeneous flowering with reduced forcing time. Prolonged cold treatments also reduced flower size and longevity, anthocyanin content, and pigment biosynthesis-related gene transcripts. In conclusion, the cold treatment had a promotive effect on dormancy breaking but caused severe drawbacks on flower quality

    Differential coupling of gibberellin responses by Rht-B1c suppressor alleles and Rht-B1b in wheat highlights a unique role for the DELLA N-terminus in dormancy

    Get PDF
    During the Green Revolution, substantial increases in wheat (Triticum aestivum) yields were realized, at least in part, through the introduction of the Reduced height (Rht)-B1b and Rht-D1b semi-dwarfing alleles. In contrast to Rht-B1b and Rht-D1b, the Rht-B1c allele is characterized by extreme dwarfism and exceptionally strong dormancy. Recently, 35 intragenic Rht-B1c suppressor alleles were created in the spring wheat cultivar Maringa, and termed overgrowth (ovg) alleles. Here, 14 ovg alleles with agronomically relevant plant heights were reproducibly classified into nine tall and five semi-dwarf alleles. These alleles differentially affected grain dormancy, internode elongation rate, and coleoptile and leaf lengths. The stability of these ovg effects was demonstrated for three ovg alleles in different genetic backgrounds and environments. Importantly, two semi-dwarf ovg alleles increased dormancy, which correlated with improved pre-harvest sprouting (PHS) resistance. Since no negative effects on grain yield or quality were observed, these semi-dwarf ovg alleles are valuable for breeding to achieve adequate height reduction and protection of grain quality in regions prone to PHS. Furthermore, this research highlights a unique role for the first 70 amino acids of the DELLA protein, encoded by the Rht-1 genes, in grain dormancy

    Autophagy-deficient breast cancer shows early tumor recurrence and escape from dormancy

    Get PDF
    Breast cancer patients who initially respond to cancer therapies often succumb to distant recurrence of the disease. It is not clear why people with the same type of breast cancer respond to treatments differently; some escape from dormancy and relapse earlier than others. In addition, some tumor clones respond to immunotherapy while others do not. We investigated how autophagy plays a role in accelerating or delaying recurrence of neu-overexpressing mouse mammary carcinoma (MMC) following adriamycin (ADR) treatment, and in affecting response to immunotherapy. We explored two strategies: 1) transient blockade of autophagy with chloroquine (CQ), which blocks fusion of autophagosomes and lysosomes during ADR treatment, and 2) permanent inhibition of autophagy by a stable knockdown of ATG5 (ATG5KD), which inhibits the formation of autophagosomes in MMC during and after ADR treatment. We found that while CQ prolonged tumor dormancy, but that stable knockdown of autophagy resulted in early escape from dormancy and recurrence. Interestingly, ATG5KD MMC contained an increased frequency of ADR-induced polyploid-like cells and rendered MMC resistant to immunotherapy. On the other hand, a transient blockade of autophagy did not affect the sensitivity of MMC to immunotherapy. Our observations suggest that while chemotherapy-induced autophagy may facilitate tumor relapse, cell-intrinsic autophagy delays tumor relapse, in part, by inhibiting the formation of polyploid-like tumor dormancy

    A role for jasmonates in the release of dormancy by cold stratification in wheat

    Get PDF
    Hydration at low temperatures, commonly referred to as cold stratification, is widely used for releasing dormancy and triggering germination in a wide range of species including wheat. However, the molecular mechanism that underlies its effect on germination has largely remained unknown. Our previous studies showed that methyl-jasmonate, a derivative of jasmonic acid (JA), promotes dormancy release in wheat. In this study, we found that cold-stimulated germination of dormant grains correlated with a transient increase in JA content and expression of JA biosynthesis genes in the dormant embryos after transfer to 20 (o)C. The induction of JA production was dependent on the extent of cold imbibition and precedes germination. Blocking JA biosynthesis with acetylsalicylic acid (ASA) inhibited the cold-stimulated germination in a dose-dependent manner. In addition, we have explored the relationship between JA and abscisic acid (ABA), a well-known dormancy promoter, in cold regulation of dormancy. We found an inverse relationship between JA and ABA content in dormant wheat embryos following stratification. ABA content decreased rapidly in response to stratification, and the decrease was reversed by addition of ASA. Our results indicate that the action of JA on cold-stratified grains is mediated by suppression of two key ABA biosynthesis genes, TaNCED1 and TaNCED2.This project was funded by a CSIRO Office of the Chief Executive PDF scheme

    TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling

    Get PDF
    In patients, non-proliferative disseminated tumour cells (DTCs) can persist in the bone marrow (BM) while other organs (such as lung) present growing metastasis. This suggested that the BM might be a metastasis ‘restrictive soil’ by encoding dormancy-inducing cues in DTCs. Here we show in a head and neck squamous cell carcinoma (HNSCC) model that strong and specific transforming growth factor-β2 (TGF-β2) signalling in the BM activates the MAPK p38α/β, inducing an (ERK/p38)low signalling ratio. This results in induction of DEC2/SHARP1 and p27, downregulation of cyclin-dependent kinase 4 (CDK4) and dormancy of malignant DTCs. TGF-β2-induced dormancy required TGF-β receptor-I (TGF-β-RI), TGF-β-RIII and SMAD1/5 activation to induce p27. In lungs, a metastasis ‘permissive soil’ with low TGF-β2 levels, DTC dormancy was short-lived and followed by metastatic growth. Importantly, systemic inhibition of TGF-β-RI or p38α/β activities awakened dormant DTCs, fuelling multi-organ metastasis. Our work reveals a ‘seed and soil’ mechanism where TGF-β2 and TGF-β-RIII signalling through p38α/β regulates DTC dormancy and defines restrictive (BM) and permissive (lung) microenvironments for HNSCC metastasis.Fil: Bragado, Paloma. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Estrada, Yeriel. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Parikh, Falguni. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Krause, Sarah. University Hospital of Schleswig-Holstein; AlemaniaFil: Capobianco, Carla Sabrina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Farina, Hernán Gabriel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schewe, Denis M.. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Aguirre Ghiso, Julio A.. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados Unido
    corecore