Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

GENOTYPIC VARIATION OF DORMANCY IN WHEAT

(Triticum aestivum L.)

A Thesis presented in partial fulfilment of the requirements for the degree of

Master of Agricultural Science

Department of Plant Science Massey University Palmerston North New Zealand

NORMAN ZVOMUYA

1996

Abstract

Embryo dormancy and α - amylase dormancy are desirable in wheat to minimise pre-harvest sprouting damage. The current work focuses on the embryo and graincoat colour.

A loose association between grain redness and dormancy in wheat is common knowledge. But the causal relationships between colour and dormancy are not clear and need to account for dormancy variability in the gene - pool. The study's working hypothesis was that colour formation triggers hypo - oxia synthesis of ABA (*vs.* gibberellins) which triggers dormancy if the timing with embryo development is optimal.

Development profiles for eight attributes (including dormancy) of grain were investigated from five white and five red wheat cultivars representing a wide genetic base. Tagged ears were sampled from pollination to harvest ripeness (days after pollination to 12.5 % moisture). All the white - grained cultivars did not have dormancy at harvest ripeness, and there was considerable variation of dormancy levels in the red - grained cultivars. The total-grain abscisic acid was not associated with redness nor dormancy, and no evidence of ABA sensitivity could be found in cv. Brevor. The failure to detect the putative dormancy of cvs. Brevor and Kenya 321 was probably due to fine detail employed in the present work, but may also have been due to the single ripening environment used. Base α amylase and flavanol levels did not contribute to the variation in embryo dormancy. Gibberellic acid insensitivity in the Rht/Gai genotypes was not expressed in terms of embryo dormancy. Examination of the profiles suggested that redness was necessary to permit dormancy, but that dormancy timing was independent of colour. This led to varying levels of dormancy at harvest ripeness. No association with ABA was evident, nor with colour precursor. However timing and duration of polymerisation (flavanol) development (hypo-oxia) did show a weak association with dormancy delay and level.

The new hypothesis suggests that colour formation hypo-oxia permits dormancy, but that its timing is flexible with respect to harvest ripeness. Broader genetic control (other than the Redness gene) is indicated. Heritability estimates indicated that timings, rather than levels, are more useful selection criteria. This included embryo dormancy attributes, colour, and harvest ripeness. For plant breeders it suggested that grain sampled at harvest ripeness could be selected for dormanc as measured in this study.

ACKNOWLEDGEMENTS

I wish to thank:

Dr. I. L. Gordon, Senior Lecturer, Department of Plant Science, Massey University, New Zealand, without whose valuable guidance this thesis will not have been finished.

Dr. D. Woolley for his valuable help with the hormone analysis work.

The Seed Technology Centre, Massey University, for use of the facilities that were necessary in this work.

My wife for her encouragement and motivation in this study.

Norman Zvomuya 1996

TABLE OF CONTENTS

Abstract	i
Acknowledgements	iü
List of Tables	iv
List of Figures	xi
CHAPTER 1	1
The nature and extent of preharvest sprouting	
damage in the grain industry	1
CHAPTER 2	7
Review of Literature	
2. Introduction	7
2.1 The wheat grain	7
2.1.1 Water relations of the wheat grain	7
2.1.2 Anatomical description	8
2.1.2.1 The seed coat	8
2.1.2.2 The endosperm	8
2.1.2.2.1 Aleurone layer	8
2.1.2.2.2 Starchy endosperm	9
2.1.2.3 The embryo	10
2.2. Dormancy and germination	10
2.2.1 Dormancy	10
2.2.2 Control of dormancy	11
2.2.3 Variation in seed dormancy	12
2.2.4 Dormancy mechanisms	12
2.2.4.1 Coat imposed dormancy	12
2.2.4.2 Embryo dormancy	13
2.2.4.3 The role of hormones in dormancy	14
2.2.4.4 Gibberellins (Gas)	14
2.2.4.5 Abscisic acid (ABA)	15
2.2.4.6 Auxins (IAA)	16
2.2.4.7 Cytokinins (Cks)	16
2.2.5 Tissue sensitivity to hormones	16
2.2.5.1 Gibberellic acid insensitivity	17
2.2.5.2 ABA insensitivity	18
2.2.5.3 Interactions between phytohormones	18
2.2.5.4 Role of grain coat colour in dormancy	19
2.2.5.5 Inheritance of red colour in wheat	20
2.2.5.5.1 Grain cost pigments	20

2.2.5.6 The flavanoids	21
2.2.5.6.1 Structure of the flavan-3-ols (catechins)	21
2.2.5.6.2 Structure of the condensed tannis	22
2.2.6 Germination	23
2.2.6.1 Enzyme activity	24
2.2.6.2 Amylase	25
2.2.6.3 Environmental influence	26
2.2.6.4 Temperature	26
2.2.6.5 Rain	27
2.2.6.6 Nitrogen-based fertilizer	27
2.2.7 Viability	27
2.3 Breeding for preharvest sprouting tolerance	28
CHAPTER 3	30
3. Introduction	30
3.1 Plant material	31
3.2 Growing conditions	31
3.2.1 The weather	32
3.3 Wheat cultivar in the study	32
3.4 Vernalization of Brevor seedlings	36
3.5 Tagging at flowering	36
3.6 Sampling procedures	36
3.7 Characters measured	37
3.7.1 Grain moisture content, grain dry weight	
and harvest ripeness	37
3.7.2 Normal germination, special germination	
and embryo maturity	38
3.7.3 Dormancy	39
ELISA assay procedure	43
3.7.4 Measurement of α -amylase concentration	47
3.7.4.1 Alpha-amylase assay procedure	47
3.7.4.2 Standard curve for the α -amylase assay	48
3.8 Data Analysis	50
3.8.1 Non-linear regression	51
3.8.2 The Quadratic exponential function	51
3.8.3 Function analysis	52
3.8.4 Analysis of variance	53
CHAPTER 4	55
4. Results	55

4.1 Grain dehydration	55
4.2 Development profiles for grain moisture content4.2.1 Analysis of the Richards function for grain dehydration	55 57
4.3 Harvest ripeness (HR)	58
Grain Mass	64
5.1 Development profiles for grain mass.	64
5.1.1 Analysis of the Richards functions for grain mass	65
5.2 Grain mass at harvet ripeness (GMHR)	70
5.2.1 Heritability estimates for grain mass at	
harvest ripeness of ten wheat cultivars	70
5.3 Number of days from pollination to maximum	
grain weight (T95GM)	70
5.3.1 Heritability estimates of number of	
days from pollination to maximum grain weight	70
Embryonic maturity	73
5.1 Development profiles for embryonic maturity	73
5.1.1 Analysis of the Development profiles for ambryo maturity	73
5.2 Embryonic maturity at harvest ripeness (EMHR)	74
5.2.1 Heritability estimates for embryonic	
maturity at harvest ripeness	74
5.3 Days from pollination to median embryonic maturity (T50EM)	75
5.4 Days from pollination to full embryonic maturity (T95EM)	75
5.5 Difference between harvest ripeness and days from	
pollination to median embryonic maturity (HR-T50EM)	76
5.5.1 Heritability	76
5.6 Difference between harvest ripeness and days from	
pollination to embryonic maturity (HR-T95EM)	76
Normal Germination	86
6.1 Development profiles	86
6.2 Function analysis	86
Dormancy	92
7.1 Development profile for grain dormancy	92
7.2 Analysis of the dormancy function	92
7.3 Dormancy at harvest ripeness (DHR)	97
7.3.1 Heritability estimates for dormancy	
at harvest ripeness (DHR)	97

•

 7.4 Number of days from pollination for the dormancy level to decline to 50% (T50D) 7.4.1 Heritability estimates for number of days 		97
from pollination for the dormancy level to decline to 50% (T50D)		98
		90
7.5 Number of days from pollination to 5% dormancy (T5D)		98
7.5.1 Heritability estimates for number		
of days from pollination to 5% dormancy		99
7.6 The difference between harvest ripeness and number		
of days from pollination to 50% dormancy (HR-T50D)		102
7.6.1 Heritability estimates for the difference		
between harvest ripeness and days from		
pollination to 50% dormancy		103
7.7 The difference between harvest ripeness and		
number of days from pollination to 5% dormancy (HR-T5D)		103
7.7.1 Heritability estimates for the difference		
between harvest ripeness and number		
of days from pollination to 5% dormancy		103
Graincoat colour		106
6.1 Development profiles for graincoat colour		106
6.2 Function analysis		106
6.3 Graincoat colour at harvest ripeness (COLHR)		111
6.3.1 Variance estimates and heritability		
estimates for graincoat colour		111
6.4 Number of days from pollination to colour maturity (T95COL)		111
6.5 Initial growth rate of graincoat colour development (COLGRo)		111
6.6 Mean growth rate of graincoat colour development (MEANGRCOL)		112
6.7 The difference between duration of colour		
ormation and harvest ripeness (HR-T95COL)		112
Flavanols		
7.1 The Quadratic exponential functions		
for concentration of flavanols in developing wheat grains		119
7.2 Analysis of the Quadratic exponential		119
functions for flavanol concentration in developing wheat grains		119
7.3 Flavanol concentration at harvest ripeness		120
Alpha-Amylase	126	
8.1 Quadratic exponential functions for alpha-amylase activity 8.1.1 Analysis of the quadratic exponential	140	126

functions fitted on alpha-amylase data 126

8.2 Level of alpha-amylase at harvest ripeness (AMAHR)	
133	
8.3 Level of alpha-amylase at the first peak of ABA activity (AMYABA1)	
133	
8.4 Level of Alpha-amylase at the second peak of ABA	124
activity (AMYABA2)	134
Abscisic acid	137
9.1 Analysis of timing, width (duration) and height (amount)	
of ABA peaks of activity	137
9.2 ABA Peak 1	138
9.3 ABA Peak 2	138
CHAPTER 5	147
Discussion	147
5.1 Redness and Dormancy	147
5.2 ABA and Embryo Dormancy	147
5.3 The Working Hypothesis	148
5.4 Hypo-oxia and Colour formation	148
5.5 Embryo maturity	149
5.6 Timing and Dormancy	150
5.7 Flavanols and Dormancy	152
5.8 "White grained" dormancy	152
5.9 Grain dehydration	153
5.10 Base α -amylase and Dormancy	154
5.11 Gibberellic acid insensitivity	154
5.12 Heritability measurements	154
5.12.1 Grain mass	154
5.12.2 Graincoat Colour	155
5.12.3 Embryo maturity	155
5.12.4 Dormancy	156
5.12.5 Future research	157
Conclusion / Summary	158

LIST OF TABLES

<u>Title</u>

Page

Chapter 3

3.1	Standard cultivars for graincoat colour score	40
3.2	Parameter estimates for the standard curve for estimating flavanols in developing wheat grains	42
3.3	Parameter estimates for the standard curve for estimating flavanols in developing wheat grains	42
3.4	Parameter estimates for the standard curve for estimating α - amylase in developing wheat grains	49
3.5	Interpretation of Discriminant functions	54
Chapter 4	0	
4.1	The mean number of days from sowing to pollination of ten wheat cultivars and tests for significance differences	56
4.2	The four discriminants for grain dehydration and their contributions to total variation	59
4.3	The correlation between the variables and the first discriminant and the standardized coefficients for each variable	59
4.4	Estimated statistics for the mean Richards functions for grain moisture content of developing grain of ten wheat cultivars	60
4.5	Discriminant scores for the grain moisture content functions of developing grain of ten wheat cultivars and t-tests for significant differences	61
4.6	The mean number of days to reach harvest ripeness and t-tests for significant differences among ten wheat cultivars	64
4.7	Variance components and heritability estimates for harvest ripeness of ten wheat cultivars	64
4.8	Estimated statistics for the mean Richards functions for grain mass of developing grain of ten wheat cultivars	67
4.9	The four discriminants for grain mass and their contributions to total variation	69

4.10	The correlatin between the variables and the first discriminant (between canonical structure) for grain mass	69
4.11	Discriminant scores for grain mass functions of developing grain of ten wheat cultivars and tests for significance differences	69
4.12	The mean grain mass (mg) at harvest ripeness and tests for significant differences amongst ten wheat cultivars	71
4.13	Variance components and heritability estimates for grain mass at harvest ripeness and the ANOVA F value and significance	71
4.14	The mean number of days from pollination to maximum grain mass and tests for significant differences amongst ten wheat cultivars	72
4.15	Variance components and heritability estimates for number of days from pollination to maximum grain mass of ten wheat cultivars and the ANOVA F value	72
5.1	The mean values of the statistics estimated from the Richards functions for special germination of ten wheat cultivars	78
5.2	The proportional contribution and significances of the four discriminants for special germination	79
5.3	The correlation between the variables and the first discriminant (Between discriminant structure) and the standardized coefficients for specials germination.	79
5.4	Discriminant scores for the Richards functions for embryonic maturity in ten wheat cultivars and the t-test among the cultivars.	79
5.5	The mean % embryonic maturity at harvest ripeness and significance symbols for ten wheat cultivars	81
5.6	Variance components estimates and heritability estimates for embryonic maturity at harvest ripeness for ten wheat cultivars and the ANOVA test for significance	81
5.7	The mean days to median embryonic maturity and t-tests for differences amongst ten wheat cultivars	82

×

5.8	Variance components and heritability estimates for days after pollination to median embryonic maturity of ten wheat cultivars	82
5.9	The mean number of days to full embryonic maturity and the t-test for differences amongst ten wheat cultivars	83
5.10	Variance components estimates for number of days after pollination to median embryonic maturity for ten wheat cultivars	83
5.11	The mean differences between number of days to median embryonic maturity and harvest ripeness and t-tests for differences amongst ten wheat cultivars	84
5.12	Variance components and heritability estimates for the mean differences between number of days to median embryonic maturity and harvest ripeness for ten wheat cultivars	84
5.13	The mean differences between number of days to full embryonic maturity and harvest ripeness and t-tests for differences amongst ten wheat cultivars	85
5.14	Variance components estimates for the mean differences between number of days to full embryonic maturity and harvest ripeness for ten wheat cultivars	85
5.15	The mean values of the statistics estimated from the Richards functions for normal germination of ten wheat cultivars	88
5.16	The proportional contribution of the four discriminants for the normal germination and their significances	89
5.17	The correlation between the variables and the first discriminant (Between discriminant structure) for normal germination	89
5.18	Pair-wise comparisons of ten wheat cultivars using the first two discriminants for normal germination	90
5.19	The mean values of the stastistics estimated from the Richards functions for grain dormancy of ten wheat cultivars	94

5.20	Properties of the four discriminants for the Richards function statistics for dormancy	96
5.21	The correlation between the variables and the first discriminant (structure) and the standardized coefficients for the variables for the dormancy function	96
5.22	Discriminant scores for the Richards functions of dormancy levels of ten wheat cultivars and the t-groups amongst the cultivars	96
5.23	The mean levels of dormancy at harvest ripeness and t-tests	100
5.24	Variance components and heritability estimates for % dormancy at harvest ripeness	100
5.25	The mean number of days from pollination to 50% dormancy for nine wheat cultivars	101
5.26	Variance components and heritability estimates for number of days from pollination to 50% dormancy	101
5.27	The mean number of days from pollination to 5% dormancy for nine wheat cultivars and test for significant differences	102
5.28	Variance components estimates for the number of days from pollination to 5% dormancy	102
5.29	The difference between harvest ripeness and number of days from pollination to 50% dormancy of ten wheat cultivars	104
5.30	Variance components and heritability estimates for the difference between harvest ripeness and number of days from pollination to 50% dormancy of ten wheat cultivars	104
5.31	The difference between harvest ripeness and number of days from pollination to 5% dormancy of ten wheat cultivars	105
5.32	Variance components and heritability estimates for the difference between harvest ripeness and number of days from pollination to 5% dormancy of ten wheat cultivars	105
6.1	Estimated statistics for the mean Richards functions for graincoat colour of developing grain of ten wheat cultivars	108

6.2	Properties of the four discriminants for the Richards function statistics for graincoat colour	110
6.3	The correlation between the variables and the first discriminant (structure) for graincoat colour	110
6.4	Discriminant scores for the Richards functions estimated for graincoat colour development in ten wheat cultivars and tests for significant differences	110
6.5	The mean colour score at harvest ripeness and tests for significant differences amongst ten wheat cultivars (five red - and five white - grained)	114
6.6	Variance components and heritability estimates for graincoat colour score of five red - and five white - grain wheat cultivars at harvest ripeness	114
6.7	The mean number of days from pollination to colour maturity of five red - and five white - grained wheat cultivars	115
6.8	Variance components and heritability estimates for number of days from pollination to colour maturity of five - red - and five white - grained wheat cultivars at harvest ripeness	115
6.9	The initial growth rate of graincoat colour development in five red - and five white - grained wheat cultivars	116
6.10	Variance components and heritability estimates for the initial growth rate of graincoat colour in five red - and five white - grained wheat cultivars	116
6.11	The mean growth rate of colour development in the graincoats of five red - red - and five white - grained wheat cultivars	117
6.12	Variance components and heritability estimates for the mean growth rate of graincoat colour development in five red - and five white - grained wheat cultivars	117
6.13	The mean differences between harvest ripeness and the duration of colour formation in ten wheat cultivars	118
6.14	Variance components estimates for the mean differences between harvest ripeness and the duration of colour formation in ten wheat cultivars	118

7.1	Estimated stastistics for the mean Quadratic exponential functions for Flavanol levels of developing grain of ten wheat cultivars	121
7.2	Properties of the four discriminants for the statistics estimated from the quadratic exponential functions for flavanol concentration	121
7.3	The correlation between the variables and the first discriminant (between discriminant structure) for flavanol concentration	121
7.4	Discriminant scores for the for the statistics estimated from the quadratic exponential functions for flavanol concentration	122
7.5	The mean values for flavanol concentration at harvest ripeness and tests for significant differences amongst ten wheat cultivars	125
7.6	Variance components and heritability estimates for the flavanol concentration at harvest ripeness in ten wheat cultivars	125
8.1	Estimated statistics for the mean Quadratic exponential functions for alpha-amylase in developing grain of ten wheat cultivars	128
8.2	Properties of the three discriminants for the Quadratic exponential function fitted for alpha-amylase	129
8.3	The correlation between the variables and the first discriminant and the standardized coefficients for alpha-amylase	129
8.4	The discriminated scores for alpha-amylase activity in developing grains of ten wheat cultivars and the t-test for differences	132
8.5	The mean alpha-amylase activity at harvest ripeness in developing grains of ten wheat cultivars and t-tests for differeces	135
8.6	Variance components and heritability estimates for alpha- amylase activity at harvest ripeness	135
8.7	The mean alpha-amylase activity, at the first peak of ABA activity, in developing grains of ten wheat cultivars	135
8.8	The mean alpha-amylase activity, at second peak of ABA	

x

	activity, in developing grains of ten wheat cultivars and t-tests for differences	136
9.1	The mean timing (days after pollination), width (days) and height (ng/grain) of the first peak of Abscisic acid activity in developing grains of ten wheat cultivars	140
9.1	The mean timing (days after pollination), width (days) and height (ng/grain) of the second peak of Abscisic acid activity in developing grains of ten wheat cultivars	141
9.3	Properties of the three discriminants for the first ABA peak in developing wheat grains of ten wheat cultivars	142
9.4	The correlation between the variables and the first discriminant and the standardized coefficient of the variables for the first ABA peak in developing wheat grains of ten wheat cultivars	142
9.5	Discriminant scores for the first ABA peak activity in ten wheat cultivars and the T-test for differences amongst the cultivars	143
9.6	Properties of the three discriminants for the second ABA peak in developing wheat grains of ten wheat cultivars	144
9.7	The correlation between the variables and the first and second discriminants and the standardized coefficient of the variables for the second ABA peak in developing wheat grains of ten wheat cultivars	144
9.8	The multivariate t-test for pair-wise comparisons between ten wheat cultivars using the two discriminants for the second peak of ABA activity (the upper triangle contains significance symbols and the lower F^1 statistics)	145

Chapter 5

9.9	The mean inflexion times for the colour, embryo and dormancy	
	development curves of ten wheat cultivars	151

	activity, in developing grains of ten wheat cultivars and t-tests for differences	136
9.1	The mean timing (days after pollination), width (days) and height (ng/grain) of the first peak of Abscisic acid activity in developing grains of ten wheat cultivars	140
9.1	The mean timing (days after pollination), width (days) and height (ng/grain) of the second peak of Abscisic acid activity in developing grains of ten wheat cultivars	141
9.3	Properties of the three discriminants for the first ABA peak in developing wheat grains of ten wheat cultivars	142
9.4	The correlation between the variables and the first discriminant and the standardized coefficient of the variables for the first ABA peak in developing wheat grains of ten wheat cultivars	142
9.5	Discriminant scores for the first ABA peak activity in ten wheat cultivars and the T-test for differences amongst the cultivars	143
9.6	Properties of the three discriminants for the second ABA peak in developing wheat grains of ten wheat cultivars	144
9.7	The correlation between the variables and the first and second discriminants and the standardized coefficient of the variables for the second ABA peak in developing wheat grains of ten wheat cultivars	144
9.8	The multivariate t-test for pair-wise comparisons between ten wheat cultivars using the two discriminants for the second peak of ABA activity (the upper triangle contains significance symbols and the lower F^1 statistics)	145

Chapter 5

9.9	The mean inflexion times for the colour, embryo and dormancy	
	development curves of ten wheat cultivars	151

LIST OF FIGURES

Number	Title	Page
3.1	The mean temperature and water balance during the growing	
	season (October, 1994 - May, 1995)	33
4.1	Diagrams for the mean Richards functions for grain dehydration of cvs. La Prevision, Hilgendorf 61, Sonora 64 A, Thatcher and Brevor	62
4.2	Diagrams for the mean Richards functions for grain dehydration of cvs. Isis, Gamenya, Karamu, Tordo and Kenya 321	63
4.3	Diagrams of the mean Richards functions for grain mass of developing grains of ten wheat cultivars	68
5.1	Diagrams of the mean Richards functions for embryonic maturity of ten wheat cultivars	80
5.2	Diagrams of the mean Richards functions for normal germination of ten wheat cultivars	91
5.3	Diagrams of the mean Richards functions for grain dormancy of ten wheat cultivars	95
6.1	Diagrams of the mean Richards functions for graincoat colour of ten wheat cultivars showing the harvest ripeness for each cultivar	109
7.1	The mean diagrams of the quadratic exponential functions fitted on flavanol concentration data for ten wheat cultivars	123
7.2	The mean diagrams of the quadratic exponential functions fitted on flavanol concentration data for ten wheat cultivars	124
8.1	Diagrams of the mean quadratic exponential functions for alpha-amylase activity in developing wheat grains from five cultivars	130
8.2	Diagrams of the mean quadratic exponential functions for alpha-amylase activity in developing wheat grains from five	101
9.1	cultivars Scatter plot of the first and second discriminant scores for the second ABA peak in ten wheat cultivars	131 146

×

LIST OF APPENDICES

Number	Title	Page
A 3.2	Seeding Potting mixture used in vernalization of Brevor seedling	172
A 3.3	Analysis of Variance for (+)- catechin standard sample	172
A3.4	Materials used in ELISA assay	173
A3.5	Analysis of Variance for cis, 4-trans-Abscisic acid standard sample	175
A3.6	Date for validation test for the ELIZA procedure for ABA analysis in wheat grains : Absorbances at 410nm	175
A3.7	Tris-maleate buffer (alpha-amylase assay)	176
A3.8	 (a) Standard curve for Alpha-amylase (b) Validation test for the Phadebas tablet method ABA Std Curve Validation test at 6 days after pollination 	177
Appendix 2	The Richards function for grain moisture content	179
Appendix 3	Estimated statistics of the Richard function fitted on data for special germination	219
	Estimated statistics of the Richard functions fitted on data for normal germination	239
	Estimated statistics of the Richard functions fitted on data for dormancy	258
Appendix 4	The Richard functions for graincoat colour (statistics by replicate)	276

	Quadratic exponential function for flavanols data (statistics by replicate)	296
Appendix 5	Estimates of statistics for the Quadratic exponential functions fitted on alpha-amyalse data from developing wheat grains	316
	The timing (days after pollination), width (days) and height (ng/grain) of peaks of Abscisic acid activity in developing grains of ten wheat cultivars	336
	Original data collected in the experiment in the study of the Genotypic variation of dormancy in wheat	359