1 research outputs found

    Fluorescence liquid biopsy for cancer detection is improved by using cationic dendronized hyperbranched polymer

    No full text
    22 pags., 14 figs., 9 tabs. 1 sch. -- This article belongs to the Special Issue Nanostructures Applied to Drug Delivery and Diagnosis(1) Background: Biophysical techniques applied to serum samples characterization could promote the development of new diagnostic tools. Fluorescence spectroscopy has been previously applied to biological samples from cancer patients and differences from healthy individuals were observed. Dendronized hyperbranched polymers (DHP) based on bis(hydroxymethyl)propionic acid (bis-MPA) were developed in our group and their potential biomedical applications explored. (2) Methods: A total of 94 serum samples from diagnosed cancer patients and healthy individuals were studied (20 pancreatic ductal adenocarcinoma, 25 blood donor, 24 ovarian cancer, and 25 benign ovarian cyst samples). (3) Results: Fluorescence spectra of serum samples (fluorescence liquid biopsy, FLB) in the presence and the absence of DHP-bMPA were recorded and two parameters from the signal curves obtained. A secondary parameter, the fluorescence spectrum score (FSscore), was calculated, and the diagnostic model assessed. For pancreatic ductal adenocarcinoma (PDAC) and ovarian cancer, the classification performance was improved when including DHP-bMPA, achieving high values of statistical sensitivity and specificity (over 85% for both pathologies). (4) Conclusions: We have applied FLB as a quick, simple, and minimally invasive promising technique in cancer diagnosis. The classification performance of the diagnostic method was further improved by using DHP-bMPA, which interacted differentially with serum samples from healthy and diseased subjects. These preliminary results set the basis for a larger study and move FLB closer to its clinical application, providing useful information for the oncologist during patient diagnosis.This research was funded by the Spanish Ministry of Economy and Competitiveness and European ERDF Funds (MCIU/AEI/FEDER, EU) (BFU2016-78232-P to A.V.C.); Projects funded by Instituto de Salud Carlos III and co-funded by European Union (ESF, “Investing in your future”): “PI15/00663 (FIS project to O.A.)”, “PI18/00349 (FIS project to O.A.)”, “FI19/00146 (PFIS contract for SHD)”; Gobierno de Aragón-ESF (Predoctoral Research Contract FEDER 2014-2020 “Construyendo Europa desde Aragón”) to V.M.-V., Protein Targets and Bioactive Compounds Group E45_17R to A.V.C., Digestive Pathology Group B25_17R to S.H.-D., O.A. and CLIP group E47_20R, to V.M.-V. and T.S.); and the Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd
    corecore