3 research outputs found

    Bridging the divide: Integrating animal and plant paradigms to secure the future of biodiversity in fire-prone ecosystems

    No full text
    © 2018 by the authors.Conserving animals and plants in fire-prone landscapes requires evidence of how fires affect modified ecosystems. Despite progress on this front, fire ecology is restricted by a dissonance between two dominant paradigms: ‘fire mosaics’ and ‘functional types’. The fire mosaic paradigm focuses on animal responses to fire events and spatial variation, whereas the functional type paradigm focuses on plant responses to recurrent fires and temporal variation. Fire management for biodiversity conservation requires input from each paradigm because animals and plants are interdependent and influenced by spatial and temporal dimensions of fire regimes. We propose that better integration of animal-based and plant-based approaches can be achieved by identifying common metrics that describe changes in multiple taxa; linking multiple components of the fire regime with animal and plant data; understanding plant-animal interactions; and incorporating spatial and temporal characteristics of fires into conservation management. Our vision for a more integrated fire ecology could be implemented via a collaborative and global network of research and monitoring sites, where measures of animals and plants are linked to real-time data on fire regimes.Kelly was funded by the Australian Research Council Centre of Excellence for Environmental Decisions and a Victorian Postdoctoral Research Fellowship delivered by veski on behalf of the Victorian Government. Brotons and Pausas were funded by the Government of Spain on Project CGL2017-89999-C2 and CGL2015-64086-P, respectively. Smith was supported by Marie Skłodowska-Curie Individual Fellowship FIRESCAPE-746191 under the EU H2020 Programme for Research and Innovation

    Bridging the divide: integrating animal and plant paradigms to secure the future of biodiversity in fire-prone ecosystems

    No full text
    Conserving animals and plants in fire-prone landscapes requires evidence of how fires affect modified ecosystems. Despite progress on this front, fire ecology is restricted by a dissonance between two dominant paradigms: ‘fire mosaics’ and ‘functional types’. The fire mosaic paradigm focuses on animal responses to fire events and spatial variation, whereas the functional type paradigm focuses on plant responses to recurrent fires and temporal variation. Fire management for biodiversity conservation requires input from each paradigm because animals and plants are interdependent and influenced by spatial and temporal dimensions of fire regimes. We propose that better integration of animal-based and plant-based approaches can be achieved by identifying common metrics that describe changes in multiple taxa; linking multiple components of the fire regime with animal and plant data; understanding plant-animal interactions; and incorporating spatial and temporal characteristics of fires into conservation management. Our vision for a more integrated fire ecology could be implemented via a collaborative and global network of research and monitoring sites, where measures of animals and plants are linked to real-time data on fire regimes
    corecore