1 research outputs found

    Bulk characterization in a Monte Carlo particle-deposition model with a novel adherence-potential barrier

    No full text
    The aim of this work is to analyze in more depth a model of particle deposition by characterizing different parameters such as profile density, bonds and perimeter, and substrate coverage, all being involved in the description of deposits as bulk. Thus, this study is an extension of a previous work on non-equilibrium interface-growth systems where two different interface-growth models, called Standard Adherence Rule Model and Potential Adherence Rule Model, were characterized. In this work, bulk characterization is implemented for the complete range of Peclet numbers. The zones of density profile (Near-Wall, Plateau, and Active-Growth) are studied by proposing an adjustment for each of them and determining the full-setting density profile depending on the Peclet number. The density profiles are compared with other one- and two-stage models. Furthermore, an algorithm is proposed to calculate the number of bonds of the particles and the perimeter that a substrate forms over time. Finally, to analyze the coating, its temporal behavior is adjusted to an exponential function by comparing the results with those found for Random Sequential Adsorption models which describe systems like colloidal particles on solid substrates, adsorption of proteins at mineral surfaces, or oxidation of one-dimensional polymer chains.This work was supported by the research Project No. FIS2013-45952-P (“Ministerio de Economía y Competitividad,” Spain) with European Union FEDER (European Regional Development Funds) support
    corecore