2 research outputs found

    Tensile strain mapping in flat germanium membranes

    Get PDF
    Under the terms of the Creative Commons Attribution (CC BY) license to their work.-- et al.Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ~4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge.This work was carried out under the RCUK Basic Technology Programme supported by research Grant Nos. EP/F040784/1, EP/J001074/1, EP/L007010/1, by the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement NANOFUNCTION No. 257375, by TAPHOR (MAT2012–31392), and by FP7 project MERGING (Grant No. 309150). This research used equipment funded by AWM and ERDF through the Science City Energy Efficiency project.Peer Reviewe

    Tensile strain mapping in flat germanium membranes

    Get PDF
    Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ∼4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge
    corecore