2 research outputs found

    New routes to synthesizing an ordered perovskite CaCu3Fe2Sb2O12 and its magnetic structure by neutron powder diffraction

    No full text
    The search for new double-perovskite oxides has grown rapidly in recent years because of their interesting physical properties like ferroelectricity, magnetism, and multiferroics. The synthesis of double perovskites, especially the A-site-ordered perovskites, in most cases needs to be made under high pressure, which is a drawback for applying these materials. Here we have demonstrated synthetic routes at ambient pressure by which we have obtained a high-quality duo-sites-ordered double perovskite, CaCu3Fe 2Sb2O12, which has been previously synthesized under high pressure. The availability of a large quantity of the powder sample allows us to determine the crystal and magnetic structures by neutron powder diffraction (NPD) at 300 and 1.3 K. Measurements of the magnetization and heat capacity showed a ferrimagnetic transition at 160 K. A ferrimagnetic structure consisting of the uncompensated antiferromagnetic coupling between neighboring collinear copper and iron spins has been resolved from the low-temperature NPD data. © 2014 American Chemical Society.This work was supported by NSF DMR 1122603 and the Welch foundation(F-1066).Peer Reviewe

    New routes to synthesize an ordered perovskite CaCu3Fe2Sb2O12 and its magnetic structure by neutron powder diffraction

    No full text
    The search for new double-perovskite oxides has grown rapidly in recent years because of their interesting physical properties like ferroelectricity, magnetism, and multiferroics. The synthesis of double perovskites, especially the A-site-ordered perovskites, in most cases needs to be made under high pressure, which is a drawback for applying these materials. Here we have demonstrated synthetic routes at ambient pressure by which we have obtained a high-quality duo-sites-ordered double perovskite, CaCu3Fe2Sb2O12, which has been previously synthesized under high pressure. The availability of a large quantity of the powder sample allows us to determine the crystal and magnetic structures by neutron powder diffraction (NPD) at 300 and 1.3 K. Measurements of the magnetization and heat capacity showed a ferrimagnetic transition at 160 K. A ferrimagnetic structure consisting of the uncompensated antiferromagnetic coupling between neighboring collinear copper and iron spins has been resolved from the low-temperature NPD data.Fil: Larregola, Sebastian Alberto. University Of Texas At Austin; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Zhou, Jianshi. University Of Texas At Austin; Estados UnidosFil: Alonso, Jose A. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Pomjakushin, Vladimir. Paul Scherrer Institut. Laboratory for Neutron Scattering; SuizaFil: Goodenough, John B.. University Of Texas At Austin; Estados Unido
    corecore