1 research outputs found

    Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties

    No full text
    Highly monodisperse, biocompatible and functionalizable sub-10-nm citrate-stabilized gold nanoparticles (Au NPs) have been synthesized following a kinetically controlled seeded-growth strategy. The use of traces of tannic acid together with an excess of sodium citrate during nucleation is fundamental in the formation of a high number (7 × 1013 NPs/mL) of small ∼3.5 nm Au seeds with a very narrow distribution. A homogeneous nanometric growth of these seeds is then achieved by adjusting the reaction parameters: pH, temperature, sodium citrate concentration and gold precursor to seed ratio. We use this method to produce Au NPs with a precise control over their sizes between 3.5 and 10 nm and a versatile surface chemistry allowing studying the size-dependent optical properties in this transition size regime lying between clusters and nanoparticles. Interestingly, an inflection point is observed for Au NPs smaller than 8 nm in which the sensitivity of the localized surface plasmon resonance (LSPR) peak position as a function of NPs size and surface modifications dramatically increase. These studies are relevant in the design of the final selectivity, activity and compatibility of Au NPs, especially in those (bio)applications where size is a critical parameter (e.g., biodistribution, multiplex labeling, and protein interaction).We acknowledge financial support from the Spanish Ministerio de Ciencia e Innovacion (MICINN) (MAT2012-33330) and from the Catalan Agencia de Gestio d’Ajuts Universitaris i de Recerca (AGAUR) (2014-SGR-612). Financial support from the QualityNano (INFRA-2010-262163) and FutureNanoNeeds (FP7-NMP-2013-LARGE-7) Projects financed by the European Community under the FP7 Capacities Programme is gratefully acknowledged. N.G.B. acknowledges financial support by MINECO through the Ramon y Cajal program (RYC2012-10991) and by the European Commission Seventh Framework Programme (FP7) through the Marie Curie Career Integration Grant (322153-MINE).Peer Reviewe
    corecore