1 research outputs found

    Suppression of UV-B stress induced flavonoids by biotic stress: Is there reciprocal crosstalk?

    No full text
    Plants respond to abiotic UV-B stress with enhanced expression of genes for flavonoid production, especially the key-enzyme chalcone synthase (CHS). Some flavonoids are antioxidative, antimicrobial and/or UV-B protective secondary metabolites. However, when plants are challenged with concomitant biotic stress (simulated e.g. by the bacterial peptide flg22, which induces MAMP triggered immunity, MTI), the production of flavonoids is strongly suppressed in both Arabidopsis thaliana cell cultures and plants. On the other hand, flg22 induces the production of defense related compounds, such as the phytoalexin scopoletin, as well as lignin, a structural barrier thought to restrict pathogen spread within the host tissue. Since all these metabolites require the precursor phenylalanine for their production, suppression of the flavonoid production appears to allow the plant to focus its secondary metabolism on the production of pathogen defense related compounds during MTI. Interestingly, several flavonoids have been reported to display anti-microbial activities. For example, the plant flavonoid phloretin targets the Pseudomonas syringae virulence factors flagella and type 3 secretion system. That is, suppression of flavonoid synthesis during MTI might have also negative side-effects on the pathogen defense. To clarify this issue, we deployed an Arabidopsis flavonoid mutant and obtained genetic evidence that flavonoids indeed contribute to ward off the virulent bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Finally, we show that UV-B attenuates expression of the flg22 receptor FLS2, indicating that there is negative and reciprocal interaction between this abiotic stress and the plant-pathogen defense responses.We would like to thank C. Ramos (Universidad de Málaga, Spain) and E. López-Solanilla (CBPG, Spain) for supplying us the two avirulent hrpL and hrcQb-U Pst mutants, respectively. Hashlin Pascananda Utami was supported by a scholarship from the Indonesian Endowment Fund for Education (LPDP) and Zheng Zhou from the China Sponsorship Council (CSC).Peer Reviewe
    corecore