1 research outputs found

    Towards an integrated model of socioeconomic biodiversity drivers, pressures and impacts. A feasibility study based on three European long-term socio-ecological research platforms

    Get PDF
    Effective policies to slow the rate of anthropogenic biodiversity loss should reduce socioeconomic pressures on biodiversity, either directly or by modifying their underlying socioeconomic driving forces. The design of such policies is currently hampered by the limited understanding of socioeconomic drivers of and pressures on biodiversity as well as by lacking data, indicators and models. In order to improve understanding of these issues we here propose a conceptual model of socioeconomic biodiversity drivers and pressures. The model is based on the drivers-pressures-impacts-states-responses (DPSIR) scheme and on the socioeconomic metabolism approach. The aim of the model is to guide research aimed at improving our understanding of socioeconomic biodiversity pressures and drivers and to serve as a basis for the development of formal, quantitative models in that field. Based on three European long-term socio-ecological research (LTSER) platforms, we analyze the model's applicability and suitability as well as data availability and research needs. These platforms are the Danube Delta Wetland System in Romania, the Doñana in Spain and the Eisenwurzen in Austria. An empirical analysis of the relationship between the human appropriation of net primary production (HANPP) and breeding bird richness in the Eisenwurzen demonstrates the ability of HANPP to provide a link between socioeconomic pressures/drivers and biodiversity. The analysis of the case studies underlines the potential utility of the conceptual model to guide future research into socioeconomic biodiversity drivers and pressures. However, considerable investments in monitoring and reconstruction of past trajectories as well as in model development will be required before mathematical (computer) models of the interrelation processes between society and ecosystems can be successfully deployed. © 2008 Elsevier B.V. All rights reserved.Peer Reviewe
    corecore