2 research outputs found

    Silylation of titanium-containing amorphous silica catalyst: effect on the alkenes epoxidation with H2O2

    Get PDF
    The surface of a Ti/SiO2 catalyst was silylated using hexamethyldisilazane (HMDS) and tetramethyldisilazane (TMDS) as silylating reagents in vapor phase. The silylation of silanol (Si–OH) on the catalysts was confirmed by diffuse reflectance UV-Vis, DRIFT spectroscopy and solid-state 29Si MAS NMR techniques. Silylation with TMDS improves the catalytic performance of Ti/SiO2 catalyst more significantly than with HMDS and this is mainly due to the steric bulk effects of trimethylsilyl groups from HMDS as compared to dimethylsilyl groups from TMDS. The silylation degree with TMDS was found to be higher than with HMDS and no changes in the silylation degree with TMDS was observed for silylation times longer than 2 h. Despite the silylation route employed, the silylated surface is hydrophobic which enhances not only in hydrogen peroxide efficiency but also and in selectivity to epoxide in the epoxidation of alkenes with H2O2. These effects are more evident when the hydrogen peroxide concentration is higher and particularly for the catalyst modified with TMDS.Peer reviewe

    Silylation of titanium-containing amorphous silica catalyst: effect on the alkenes epoxidation with H2O2

    Get PDF
    The surface of a Ti/SiO2 catalyst was silylated using hexamethyldisilazane (HMDS) and tetramethyldisilazane (TMDS) as silylating reagents in vapor phase. The silylation of silanol (Si–OH) on the catalysts was confirmed by diffuse reflectance UV-Vis, DRIFT spectroscopy and solid-state 29Si MAS NMR techniques. Silylation with TMDS improves the catalytic performance of Ti/SiO2 catalyst more significantly than with HMDS and this is mainly due to the steric bulk effects of trimethylsilyl groups from HMDS as compared to dimethylsilyl groups from TMDS. The silylation degree with TMDS was found to be higher than with HMDS and no changes in the silylation degree with TMDS was observed for silylation times longer than 2 h. Despite the silylation route employed, the silylated surface is hydrophobic which enhances not only in hydrogen peroxide efficiency but also and in selectivity to epoxide in the epoxidation of alkenes with H2O2. These effects are more evident when the hydrogen peroxide concentration is higher and particularly for the catalyst modified with TMDS.Peer reviewe
    corecore