1 research outputs found

    Antithyroid drug detection using an enzyme cascade blocking in a nanoparticle-based lab-on-a-chip system

    No full text
    A methimazole (MT) biosensor based on a nanocomposite of magnetic nanoparticles (MNPs) functionalized with iridium oxide nanoparticles (IrOx NPs) and tyrosinase (Tyr) immobilized onto screen printed electrode (SPE) by using a permanent magnet is presented. This system is evaluated in batch mode via chelating copper at the active site of tyrosinase and in flow mode by thioquinone formation. The MT detection in flow mode is achieved using a hybrid polydimethylsiloxane/polyester amperometric lab-on-a-chip (LOC) microsystem with an integrated SPE. Both systems are very sensitive with low limit of detection (LOD): 0.006. ¿M and 0.004. ¿M for batch and flow modes, respectively. Nevertheless, the flow mode has advantages such as its reusability, automation, low sample volume (6. ¿L), and fast response (20. s). Optimization and validation parameters such as enzyme-substrate amount, flow rate, inhibition conditions, repeatability and reproducibility of the biosensor have been performed. The proposed methods have been applied in MT detection in spiked human serum and pharmaceutical dosage forms.We acknowledge MINECO (Spain) through Project MAT2011-25870. S. Kurbanoglu acknowledges the support given by Ankara UniversityBAP14L0237002 for her Ph.D. thesis project.Peer Reviewe
    corecore