146,692 research outputs found
Laser docking sensor engineering model
NASA JSC has been involved in the development of Laser sensors for the past ten years in order to support future rendezvous and docking missions, both manned and unmanned. Although many candidate technologies have been breadboarded and evaluated, no sensor hardware designed specifically for rendezvous and docking applications has been demonstrated on-orbit. It has become apparent that representative sensors need to be flown and demonstrated as soon as possible, with minimal cost, to provide the capability of the technology in meeting NASA's future AR&C applications. Technology and commercial component reliability have progressed to where it is now feasible to fly hardware as a detailed test objective minimizing the overall cost and development time. This presentation will discuss the ongoing effort to convert an existing in-house developed breadboard to an engineering model configuration suitable for flight. The modifications include improving the ranger resolution and stability with an in-house design, replacing the rack mounted galvanometric scanner drivers with STD-bus cards, replacing the system controlling personal computer with a microcontroller, and repackaging the subsystems as appropriate. The sensor will use the performance parameters defined in previous JSC requirements working groups as design goals and be built to withstand the space environment where fiscally feasible. Testing of the in-house ranger design is expected to be completed in October. The results will be included in the presentation. Preliminary testing of the ranging circuitry indicates a range resolution of 4mm is possible. The sensor will be mounted in the payload bay on a shelf bracket and have command, control, and display capabilities using the payload general support computer via an RS422 data line
A real-time proximity querying algorithm for haptic-based molecular docking
Intermolecular binding underlies every metabolic and regulatory processes of the cell, and the therapeutic and pharmacological properties of drugs. Molecular docking systems model and simulate these interactions in silico and allow us to study the binding process. Haptic-based docking provides an immersive virtual docking environment where the user can interact with and guide the molecules to their binding pose. Moreover, it allows human perception, intuition and knowledge to assist and accelerate the docking process, and reduces incorrect binding poses. Crucial for interactive docking is the real-time calculation of interaction forces. For smooth and accurate haptic exploration and manipulation, force-feedback cues have to be updated at a rate of 1 kHz. Hence, force calculations must be performed within 1ms. To achieve this, modern haptic-based docking approaches often utilize pre-computed force grids and linear interpolation. However, such grids are time-consuming to pre-compute (especially for large molecules), memory hungry, can induce rough force transitions at cell boundaries and cannot be applied to flexible docking. Here we propose an efficient proximity querying method for computing intermolecular forces in real time. Our motivation is the eventual development of a haptic-based docking solution that can model molecular flexibility. Uniquely in a haptics application we use octrees to decompose the 3D search space in order to identify the set of interacting atoms within a cut-off distance. Force calculations are then performed on this set in real time. The implementation constructs the trees dynamically, and computes the interaction forces of large molecular structures (i.e. consisting of thousands of atoms) within haptic refresh rates. We have implemented this method in an immersive, haptic-based, rigid-body, molecular docking application called Haptimol_RD. The user can use the haptic device to orientate the molecules in space, sense the interaction forces on the device, and guide the molecules to their binding pose. Haptimol_RD is designed to run on consumer level hardware, i.e. there is no need for specialized/proprietary hardware
Technical Challenges Associated with In-Air Wingtip Docking of Aircraft in Forward Flight
Autonomous in-air wingtip docking of aircraft offers significant opportunity for system level performance gains for numerous aircraft applications. Several of the technical challenges facing wingtip docking of fixed-wing aircraft are addressed in this paper, including: close proximity aerodynamic coupling; mechanisms and operations for robust docking; and relative state estimation methods. A simulation framework considering the aerodynamics, rigid-body dynamics, and vehicle controls is developed and used to perform docking sensitivity studies for a system of two 5.5% scale NASA Generic Transport Model aircraft. Additionally, proof of- concept testing of a candidate docking mechanism designed to move the primary wingtip vortex inboard suggests the viability of such an approach for achieving robust docking
Control Strategy of Hardware-in-the-Loop Simulator EPOS 2.0 for Autonomous Docking Verification
This paper briefly describes the hybrid simulator system called European Proximity Operation Simulator (EPOS 2.0) and the
development of the hardware-in-the-loop (HIL) docking simulation concept. A critical requirement for the docking simulation
of this HIL simulator is that the 6-DOF robots in the loop have to exactly mimic the dynamic response of the two satellites
during a contact operation. The main challenges to meet this requirement are in the stiffness of the robots, which is unlike
that of the satellites, as well as the time delay in the HIL simulator. The paper mainly presents the impedance parameter
identification concept for matching the impedance between the satellites impact model and the EPOS robots. In addition
it presents the contact dynamics model used, and the control strategies to meet the requirements of the docking simulator.
Finally it presents the preliminary results and future work
Response of flexible space vehicles to docking impact. Volume 2 - Numerical investigation
Mathematical model and computerized simulation of flexible space vehicle response to docking impac
Dynamic modeling and adaptive control for space stations
Of all large space structural systems, space stations present a unique challenge and requirement to advanced control technology. Their operations require control system stability over an extremely broad range of parameter changes and high level of disturbances. During shuttle docking the system mass may suddenly increase by more than 100% and during station assembly the mass may vary even more drastically. These coupled with the inherent dynamic model uncertainties associated with large space structural systems require highly sophisticated control systems that can grow as the stations evolve and cope with the uncertainties and time-varying elements to maintain the stability and pointing of the space stations. The aspects of space station operational properties are first examined, including configurations, dynamic models, shuttle docking contact dynamics, solar panel interaction, and load reduction to yield a set of system models and conditions. A model reference adaptive control algorithm along with the inner-loop plant augmentation design for controlling the space stations under severe operational conditions of shuttle docking, excessive model parameter errors, and model truncation are then investigated. The instability problem caused by the zero-frequency rigid body modes and a proposed solution using plant augmentation are addressed. Two sets of sufficient conditions which guarantee the globablly asymptotic stability for the space station systems are obtained
Autonomous homing and docking tasks for an underwater vehicle
This paper briefly introduces a strategy for autonomous homing and docking tasks using an autonomous underwater vehicle. The control and guidance based path following for those tasks are described in this work. A standard sliding mode for controller design is briefly given. The method provides robust motion control efforts for an underwater vehicle’s decoupled system whilst minimising chattering effects. In a guidance system, the vector field based on a conventional artificial potential field method gives a desired trajectory with a use of existing information from sensors in the network. A well structured Line-of-Sight method is used for an AUV to follow the path. It provides guidance for an AUV to follow the predefined trajectory to a required position with the final desired orientation at the dock. Integration of a control and guidance system provides a complete system for this application. Simulation studies are illustrated in the paper
Sampling of conformational ensemble for virtual screening using molecular dynamics simulations and normal mode analysis
Aim: Molecular dynamics simulations and normal mode analysis are
well-established approaches to generate receptor conformational ensembles
(RCEs) for ligand docking and virtual screening. Here, we report new fast
molecular dynamics-based and normal mode analysis-based protocols combined with
conformational pocket classifications to efficiently generate RCEs. Materials
\& methods: We assessed our protocols on two well-characterized protein targets
showing local active site flexibility, dihydrofolate reductase and large
collective movements, CDK2. The performance of the RCEs was validated by
distinguishing known ligands of dihydrofolate reductase and CDK2 among a
dataset of diverse chemical decoys. Results \& discussion: Our results show
that different simulation protocols can be efficient for generation of RCEs
depending on different kind of protein flexibility
- …
