2 research outputs found

    Bounds for the Generalized Distance Eigenvalues of a Graph

    Get PDF
    Let G be a simple undirected graph containing n vertices. Assume G is connected. Let D(G) be the distance matrix, DL(G) be the distance Laplacian, DQ(G) be the distance signless Laplacian, and Tr(G) be the diagonal matrix of the vertex transmissions, respectively. Furthermore, we denote by Dα(G) the generalized distance matrix, i.e., Dα(G)=αTr(G)+(1−α)D(G) , where α∈[0,1] . In this paper, we establish some new sharp bounds for the generalized distance spectral radius of G, making use of some graph parameters like the order n, the diameter, the minimum degree, the second minimum degree, the transmission degree, the second transmission degree and the parameter α , improving some bounds recently given in the literature. We also characterize the extremal graphs attaining these bounds. As an special cases of our results, we will be able to cover some of the bounds recently given in the literature for the case of distance matrix and distance signless Laplacian matrix. We also obtain new bounds for the k-th generalized distance eigenvalue

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group
    corecore