91,913 research outputs found

    How the Sando Search Tool Recommends Queries

    Full text link
    Developers spend a significant amount of time searching their local codebase. To help them search efficiently, researchers have proposed novel tools that apply state-of-the-art information retrieval algorithms to retrieve relevant code snippets from the local codebase. However, these tools still rely on the developer to craft an effective query, which requires that the developer is familiar with the terms contained in the related code snippets. Our empirical data from a state-of-the-art local code search tool, called Sando, suggests that developers are sometimes unacquainted with their local codebase. In order to bridge the gap between developers and their ever-increasing local codebase, in this paper we demonstrate the recommendation techniques integrated in Sando

    Selection of Software Product Line Implementation Components Using Recommender Systems: An Application to Wordpress

    Get PDF
    In software products line (SPL), there may be features which can be implemented by different components, which means there are several implementations for the same feature. In this context, the selection of the best components set to implement a given configuration is a challenging task due to the high number of combinations and options which could be selected. In certain scenarios, it is possible to find information associated with the components which could help in this selection task, such as user ratings. In this paper, we introduce a component-based recommender system, called (REcommender System that suggests implementation Components from selecteD fEatures), which uses information associated with the implementation components to make recommendations in the domain of the SPL configuration. We also provide a RESDEC reference implementation that supports collaborative-based and content-based filtering algorithms to recommend (i.e., implementation components) regarding WordPress-based websites configuration. The empirical results, on a knowledge base with 680 plugins and 187 000 ratings by 116 000 users, show promising results. Concretely, this indicates that it is possible to guide the user throughout the implementation components selection with a margin of error smaller than 13% according to our evaluation.Ministerio de Economía y Competitividad RTI2018-101204-B-C22Ministerio de Economía y Competitividad TIN2014-55894-C2-1-RMinisterio de Economía y Competitividad TIN2017-88209-C2-2-RMinisterio de Economía, Industria y Competitividad MCIU-AEI TIN2017-90644-RED

    Search-based Tier Assignment for Optimising Offline Availability in Multi-tier Web Applications

    Full text link
    Web programmers are often faced with several challenges in the development process of modern, rich internet applications. Technologies for the different tiers of the application have to be selected: a server-side language, a combination of JavaScript, HTML and CSS for the client, and a database technology. Meeting the expectations of contemporary web applications requires even more effort from the developer: many state of the art libraries must be mastered and glued together. This leads to an impedance mismatch problem between the different technologies and it is up to the programmer to align them manually. Multi-tier or tierless programming is a web programming paradigm that provides one language for the different tiers of the web application, allowing the programmer to focus on the actual program logic instead of the accidental complexity that comes from combining several technologies. While current tierless approaches therefore relieve the burden of having to combine different technologies into one application, the distribution of the code is explicitly tied into the program. Certain distribution decisions have an impact on crosscutting concerns such as information security or offline availability. Moreover, adapting the programs such that the application complies better with these concerns often leads to code tangling, rendering the program more difficult to understand and maintain. We introduce an approach to multi-tier programming where the tierless code is decoupled from the tier specification. The developer implements the web application in terms of slices and an external specification that assigns the slices to tiers. A recommender system completes the picture for those slices that do not have a fixed placement and proposes slice refinements as well. This recommender system tries to optimise the tier specification with respect to one or more crosscutting concerns. This is in contrast with current cutting edge solutions that hide distribution decisions from the programmer. In this paper we show that slices, together with a recommender system, enable the developer to experiment with different placements of slices, until the distribution of the code satisfies the programmer's needs. We present a search-based recommender system that maximises the offline availability of a web application and a concrete implementation of these concepts in the tier-splitting tool Stip.js

    A Combined Representation Learning Approach for Better Job and Skill Recommendation

    Get PDF
    Job recommendation is an important task for the modern recruitment industry. An excellent job recommender system not only enables to recommend a higher paying job which is maximally aligned with the skill-set of the current job, but also suggests to acquire few additional skills which are required to assume the new position. In this work, we created three types of information net- works from the historical job data: (i) job transition network, (ii) job-skill network, and (iii) skill co-occurrence network. We provide a representation learning model which can utilize the information from all three networks to jointly learn the representation of the jobs and skills in the shared k-dimensional latent space. In our experiments, we show that by jointly learning the representation for the jobs and skills, our model provides better recommendation for both jobs and skills. Additionally, we also show some case studies which validate our claims

    RACOFI: A Rule-Applying Collaborative Filtering System

    Get PDF
    In this paper we give an overview of the RACOFI (Rule-Applying Collaborative Filtering) multidimensional rating system and its related technologies. This will be exemplified with RACOFI Music, an implemented collaboration agent that assists on-line users in the rating and recommendation of audio (Learning) Objects. It lets users rate contemporary Canadian music in the five dimensions of impression, lyrics, music, originality, and production. The collaborative filtering algorithms STI Pearson, STIN2, and the Per Item Average algorithms are then employed together with RuleML-based rules to recommend music objects that best match user queries. RACOFI has been on-line since August 2003 at http://racofi.elg.ca.

    Measurement and analysis of water/oil multiphase flow using electrical capacitance tomography sensor

    Get PDF
    The paper investigates the capability of using a portable 16-segmented Electrical Capacitance Tomo-graphy (ECT) sensor and a new excitation technique to measure the concentration profile of water/oil multiphase flow. The concentration profile obtained from the capacitance measurements is capable of providing images of the water and oil flow in the pipeline. The visualization results deliver information regarding the flow regime and concentration distribution of the multiphase flow. The information is able to help in designing process equipment and verifying the existing computational modeling and simu-lation techniques

    The Track Record on Takings Legislation: Lessons from Democracy\u27s Laboratories

    Get PDF
    This report by the Georgetown Environmental Law & Policy Institute, entitled The Track Record on Takings Legislation: Lessons from Democracy\u27s Laboratories, examines the experiences of Florida, Oregon, and several other states with legislation implementing the property rights agenda. The report is the first comprehensive effort to systematically identify and evaluate the on-the-ground consequences of so-called takings compensation laws. The major findings of the report are that the takings agenda has undermined community protections by forcing a roll back of existing legal rules and/or by exerting a chilling effect on new legislative activity, special interests such as developers and timber companies have been the primary beneficiaries of takings legislation, the takings laws have fomented and exacerbated neighbor-neighbor conflicts over land use issues, the takings agenda has conferred large windfalls on certain owners either in the form of taxpayer-funded awards or special exemptions from the rules that apply to the rest of the community, and the property rights agenda has undermined the democratic process. Contrary to a common argument made by proponents of this type of legislation, requiring the government to pay to regulate does not lead government officials to make a more nuanced appraisal of the costs and benefits of regulations, apparently because the salience of fiscal costs to government officials far outweighs the relatively more diffuse political benefits of community and homeowner protection
    corecore