1,704,856 research outputs found

    A Powerful Optimization Tool for Analog Integrated Circuits Design

    Get PDF
    This paper presents a new optimization tool for analog circuit design. Proposed tool is based on the robust version of the differential evolution optimization method. Corners of technology, temperature, voltage and current supplies are taken into account during the optimization. That ensures robust resulting circuits. Those circuits usually do not need any schematic change and are ready for the layout.. The newly developed tool is implemented directly to the Cadence design environment to achieve very short setup time of the optimization task. The design automation procedure was enhanced by optimization watchdog feature. It was created to control optimization progress and moreover to reduce the search space to produce better design in shorter time. The optimization algorithm presented in this paper was successfully tested on several design examples

    Quantization Design for Distributed Optimization

    Get PDF
    We consider the problem of solving a distributed optimization problem using a distributed computing platform, where the communication in the network is limited: each node can only communicate with its neighbours and the channel has a limited data-rate. A common technique to address the latter limitation is to apply quantization to the exchanged information. We propose two distributed optimization algorithms with an iteratively refining quantization design based on the inexact proximal gradient method and its accelerated variant. We show that if the parameters of the quantizers, i.e. the number of bits and the initial quantization intervals, satisfy certain conditions, then the quantization error is bounded by a linearly decreasing function and the convergence of the distributed algorithms is guaranteed. Furthermore, we prove that after imposing the quantization scheme, the distributed algorithms still exhibit a linear convergence rate, and show complexity upper-bounds on the number of iterations to achieve a given accuracy. Finally, we demonstrate the performance of the proposed algorithms and the theoretical findings for solving a distributed optimal control problem

    Reliability Based Design Optimization of Concrete Mix Proportions Using Generalized Ridge Regression Model

    Full text link
    This paper presents Reliability Based Design Optimization (RBDO) model to deal with uncertainties involved in concrete mix design process. The optimization problem is formulated in such a way that probabilistic concrete mix input parameters showing random characteristics are determined by minimizing the cost of concrete subjected to concrete compressive strength constraint for a given target reliability. Linear and quadratic models based on Ordinary Least Square Regression (OLSR), Traditional Ridge Regression (TRR) and Generalized Ridge Regression (GRR) techniques have been explored to select the best model to explicitly represent compressive strength of concrete. The RBDO model is solved by Sequential Optimization and Reliability Assessment (SORA) method using fully quadratic GRR model. Optimization results for a wide range of target compressive strength and reliability levels of 0.90, 0.95 and 0.99 have been reported. Also, safety factor based Deterministic Design Optimization (DDO) designs for each case are obtained. It has been observed that deterministic optimal designs are cost effective but proposed RBDO model gives improved design performance

    Optimization of broaching design

    Get PDF
    Broaching is one of the most recognized machining processes that can yield high productivity and high quality when applied properly. One big disadvantage of broaching is that all process parameters, except cutting speed, are built into the broaching tools. Therefore, it is not possible to modify the cutting conditions during the process once the tool is manufactured. Optimal design of broaching tools has a significant impact to increase the productivity and to obtain high quality products. In this paper, an optimization model for broaching design is presented. The model results in a non-linear non-convex optimization problem. Analysis of the model structure indicates that the model can be decomposed into smaller problems. The model is applied on a turbine disc broaching problem which is considered as one of the most complex broaching operations

    Wiring optimization explanation in neuroscience: What is Special about it?

    Get PDF
    This paper examines the explanatory distinctness of wiring optimization models in neuroscience. Wiring optimization models aim to represent the organizational features of neural and brain systems as optimal (or near-optimal) solutions to wiring optimization problems. My claim is that that wiring optimization models provide design explanations. In particular, they support ideal interventions on the decision variables of the relevant design problem and assess the impact of such interventions on the viability of the target system

    Bayesian optimization for materials design

    Full text link
    We introduce Bayesian optimization, a technique developed for optimizing time-consuming engineering simulations and for fitting machine learning models on large datasets. Bayesian optimization guides the choice of experiments during materials design and discovery to find good material designs in as few experiments as possible. We focus on the case when materials designs are parameterized by a low-dimensional vector. Bayesian optimization is built on a statistical technique called Gaussian process regression, which allows predicting the performance of a new design based on previously tested designs. After providing a detailed introduction to Gaussian process regression, we introduce two Bayesian optimization methods: expected improvement, for design problems with noise-free evaluations; and the knowledge-gradient method, which generalizes expected improvement and may be used in design problems with noisy evaluations. Both methods are derived using a value-of-information analysis, and enjoy one-step Bayes-optimality

    Matrix-Monotonic Optimization for MIMO Systems

    Full text link
    For MIMO systems, due to the deployment of multiple antennas at both the transmitter and the receiver, the design variables e.g., precoders, equalizers, training sequences, etc. are usually matrices. It is well known that matrix operations are usually more complicated compared to their vector counterparts. In order to overcome the high complexity resulting from matrix variables, in this paper we investigate a class of elegant multi-objective optimization problems, namely matrix-monotonic optimization problems (MMOPs). In our work, various representative MIMO optimization problems are unified into a framework of matrix-monotonic optimization, which includes linear transceiver design, nonlinear transceiver design, training sequence design, radar waveform optimization, the corresponding robust design and so on as its special cases. Then exploiting the framework of matrix-monotonic optimization the optimal structures of the considered matrix variables can be derived first. Based on the optimal structure, the matrix-variate optimization problems can be greatly simplified into the ones with only vector variables. In particular, the dimension of the new vector variable is equal to the minimum number of columns and rows of the original matrix variable. Finally, we also extend our work to some more general cases with multiple matrix variables.Comment: 37 Pages, 5 figures, IEEE Transactions on Signal Processing, Final Versio

    The Sizing and Optimization Language (SOL): A computer language to improve the user/optimizer interface

    Get PDF
    The nonlinear mathematical programming method (formal optimization) has had many applications in engineering design. A figure illustrates the use of optimization techniques in the design process. The design process begins with the design problem, such as the classic example of the two-bar truss designed for minimum weight as seen in the leftmost part of the figure. If formal optimization is to be applied, the design problem must be recast in the form of an optimization problem consisting of an objective function, design variables, and constraint function relations. The middle part of the figure shows the two-bar truss design posed as an optimization problem. The total truss weight is the objective function, the tube diameter and truss height are design variables, with stress and Euler buckling considered as constraint function relations. Lastly, the designer develops or obtains analysis software containing a mathematical model of the object being optimized, and then interfaces the analysis routine with existing optimization software such as CONMIN, ADS, or NPSOL. This final state of software development can be both tedious and error-prone. The Sizing and Optimization Language (SOL), a special-purpose computer language whose goal is to make the software implementation phase of optimum design easier and less error-prone, is presented
    corecore