26,292 research outputs found

    Penalized estimation in large-scale generalized linear array models

    Full text link
    Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension of the parameter vector. A new design matrix free algorithm is proposed for computing the penalized maximum likelihood estimate for GLAMs, which, in particular, handles nondifferentiable penalty functions. The proposed algorithm is implemented and available via the R package \verb+glamlasso+. It combines several ideas -- previously considered separately -- to obtain sparse estimates while at the same time efficiently exploiting the GLAM structure. In this paper the convergence of the algorithm is treated and the performance of its implementation is investigated and compared to that of \verb+glmnet+ on simulated as well as real data. It is shown that the computation time fo

    How Correlations Influence Lasso Prediction

    Full text link
    We study how correlations in the design matrix influence Lasso prediction. First, we argue that the higher the correlations are, the smaller the optimal tuning parameter is. This implies in particular that the standard tuning parameters, that do not depend on the design matrix, are not favorable. Furthermore, we argue that Lasso prediction works well for any degree of correlations if suitable tuning parameters are chosen. We study these two subjects theoretically as well as with simulations

    The degrees of freedom of the Lasso for general design matrix

    Full text link
    In this paper, we investigate the degrees of freedom (\dof) of penalized 1\ell_1 minimization (also known as the Lasso) for linear regression models. We give a closed-form expression of the \dof of the Lasso response. Namely, we show that for any given Lasso regularization parameter λ\lambda and any observed data yy belonging to a set of full (Lebesgue) measure, the cardinality of the support of a particular solution of the Lasso problem is an unbiased estimator of the degrees of freedom. This is achieved without the need of uniqueness of the Lasso solution. Thus, our result holds true for both the underdetermined and the overdetermined case, where the latter was originally studied in \cite{zou}. We also show, by providing a simple counterexample, that although the \dof theorem of \cite{zou} is correct, their proof contains a flaw since their divergence formula holds on a different set of a full measure than the one that they claim. An effective estimator of the number of degrees of freedom may have several applications including an objectively guided choice of the regularization parameter in the Lasso through the \sure framework. Our theoretical findings are illustrated through several numerical simulations.Comment: A short version appeared in SPARS'11, June 2011 Previously entitled "The degrees of freedom of penalized l1 minimization

    Lossy Compression via Sparse Linear Regression: Computationally Efficient Encoding and Decoding

    Full text link
    We propose computationally efficient encoders and decoders for lossy compression using a Sparse Regression Code. The codebook is defined by a design matrix and codewords are structured linear combinations of columns of this matrix. The proposed encoding algorithm sequentially chooses columns of the design matrix to successively approximate the source sequence. It is shown to achieve the optimal distortion-rate function for i.i.d Gaussian sources under the squared-error distortion criterion. For a given rate, the parameters of the design matrix can be varied to trade off distortion performance with encoding complexity. An example of such a trade-off as a function of the block length n is the following. With computational resource (space or time) per source sample of O((n/\log n)^2), for a fixed distortion-level above the Gaussian distortion-rate function, the probability of excess distortion decays exponentially in n. The Sparse Regression Code is robust in the following sense: for any ergodic source, the proposed encoder achieves the optimal distortion-rate function of an i.i.d Gaussian source with the same variance. Simulations show that the encoder has good empirical performance, especially at low and moderate rates.Comment: 14 pages, to appear in IEEE Transactions on Information Theor
    corecore