1,640 research outputs found

    A passive satellite deorbiting strategy for MEO using solar radiation pressure and the J2 effect

    Get PDF
    The growing population of space debris poses a serious risk to the future of space flight. To effectively manage the increase of debris in orbit, end-of life disposal has become a key requirement for future missions. This poses a challenge for Medium Earth Orbit (MEO) spacecraft which require a large Δv to re-enter the atmosphere or reach the geostationary graveyard orbit. This paper further explores a passive strategy based on the joint effects of solar radiation pressure and the Earth’s oblateness acting on a high area-to-mass ratio object. The concept was previously presented as an analytical planar model. This paper uses a full 3D model to validate the analytical results numerically for equatorial circular orbits first, then investigating higher inclinations. It is shown that for higher inclinations the initial position of the Sun and right ascension of the ascending node become increasingly important. A region of very low required area-to-mass ratio is identified in the parameter space of a and inclination which occurs for altitudes below 10,000 km

    Solar Sails : Technology and demonstration status

    Get PDF
    Solar Sail propulsion has been validated in space (IKAROS, 2012) and soon several more solar-sail propelled spacecraft will be flown. Using sunlight for spacecraft propulsion is not a new idea. First proposed by Frederick Tsander and Konstantin Tsiolkovsky in the 1920's, NASA's Echo 1 balloon, launched in 1960, was the first spacecraft for which the effects of solar photon pressure were measured. Solar sails reflect sunlight to achieve thrust, thus eliminating the need for costly and often very-heavy fuel. Such "propellantless" propulsion will enable whole new classes of space science and exploration missions previously not considered possible due to the propulsive-intense maneouvers and operations required

    Solar radiation pressure augmented deorbiting from high altitude sun-synchronous orbits

    Get PDF
    This paper discusses the use of solar radiation pressure (SRP) augmented deorbiting to passively remove small satellites from high altitude Sun-synchronous orbits. SRP-augmented deorbiting works by deploying a light-weight reflective inflatable device to increase the area-to-mass-ratio of the spacecraft. The interactions of the orbital perturbations due to solar radiation pressure and the Earth’s oblateness cause the eccentricity of the orbit to librate at a quasi-constant semi-major axis. A large enough area-to-mass-ratio will ensure that a maximum eccentricity is reached where the spacecraft will then experience enough aerodynamic drag at the orbit pericentre to deorbit. An analytical model of the orbital evolution based on a Hamiltonian approach is used to obtain a first guess for the required area-to-mass-ratio to deorbit. This first guess is then used in a numerical propagation of the orbital elements using the Gauss’ equations to find the actual requirements as a function of altitude. The results are discussed and altitude regions for Sun-synchronous orbits are identified in which the proposed method is most effective. Finally, the implementation of the device is discussed. It is shown that passive solar radiation pressure deorbiting is a useful alternative to propulsive end-of-life manoeuvres for future high altitude Sun-synchronous missions

    Mission analysis of Hevelius-lunar microsatellite mission

    Get PDF
    This paper describes the mission analysis and design of the 'Hevelius - Lunar Microsatellite Mission'. The main goal of the overall mission is to place a net-lander on the far side of the Moon to perform some scientific experiments. Two different satellites have been designed to achieve this objective: a microsatellite orbiter to support the net-lander and a carrier spacecraft to transport the net-lander. An L2 Halo orbit has been selected for the orbiter in order to have a constant communication link between the landers and the Earth. The invariant manifolds of the Earth-Moon system have been used to design a low cost transfer trajectory to the L2 Halo orbit. Prior to the beginning of landing operations the carrier is parked into a frozen orbit after a WSB transfer. Finally the descent and landing phases have been designed in order to accomplish the final goals. The whole mission analysis and design process has been driven by the need for a low cost and low risk mission

    Electric sail, photonic sail and deorbiting applications of the freely guided photonic blade

    Full text link
    We consider a freely guided photonic blade (FGPB) which is a centrifugally stretched sheet of photonic sail membrane that can be tilted by changing the centre of mass or by other means. The FGPB can be installed at the tip of each main tether of an electric solar wind sail (E-sail) so that one can actively manage the tethers to avoid their mutual collisions and to modify the spin rate of the sail if needed. This enables a more scalable and modular E-sail than the baseline approach where auxiliary tethers are used for collision avoidance. For purely photonic sail applications one can remove the tethers and increase the size of the blades to obtain a novel variant of the heliogyro that can have a significantly higher packing density than the traditional heliogyro. For satellite deorbiting in low Earth orbit (LEO) conditions, analogous designs exist where the E-sail effect is replaced by the negative polarity plasma brake effect and the photonic pressure by atmospheric drag. We conclude that the FGPB appears to be an enabling technique for diverse applications. We also outline a way of demonstrating it on ground and in LEO at low cost.Comment: 21 pages, 10 figures, accepted in Acta Astronautica Jul 28 201

    Antimatter applied for Earth protection from asteroid collision

    Get PDF
    An Earth protection system against asteroids and meteorites in colliding orbit is proposed. The system consists of detection and deorbiting systems. Analyses are given for the resolution of microwave optics, the detectability of radar, the orbital plan of intercepting operation, and the antimatter mass require for totally or partially blasting the asteroid. Antimatter of 1 kg is required for deorbiting an asteroid 200 m in diameter. An experimental simulation of antimatter cooling and storage is planned. The facility under construction is discussed

    A passive high altitude deorbiting strategy

    Get PDF
    A deorbiting strategy for small satellites, in particular CubeSats, is proposed which exploits the effect of solar radiation pressure to increase the spacecraft orbit eccentricity so that the perigee falls below an altitude where atmospheric drag will cause the spacecraft orbit to naturally decay. This is achieved by fitting the spacecraft with an inflatable reflective balloon. Once this is fully deployed, the overall area-to-mass ratio of the spacecraft is increased; hence solar radiation pressure and aerodynamic drag have a greatly increased effect on the spacecraft orbit. An analytical model of the orbit evolution due to solar radiation pressure and the J2 effect as a Hamiltonian system shows the evolution of an initially circular orbit. The maximum reachable orbit eccentricity as a function of semi-major axis and area-to-mass ratio can be found and used to determine the size of balloon required for deorbiting from circular orbits of different altitudes. A system design of the device is performed and the feasibility of the proposed deorbiting strategy is assessed and compared to the use of conventional thrusters. The use of solar radiation pressure to increase the orbit eccentricity enables passive deorbiting from significantly higher altitudes than conventional drag augmentation devices

    Design of an unmanned, reusable vehicle to de-orbit debris in Earth orbit

    Get PDF
    The space debris problem is becoming more important because as orbital missions increase, the amount of debris increases. It was the design team's objective to present alternative designs and a problem solution for a deorbiting vehicle that will alleviate the problem by reducing the amount of large debris in earth orbit. The design team was asked to design a reusable, unmanned vehicle to de-orbit debris in earth orbit. The design team will also construct a model to demonstrate the system configuration and key operating features. The alternative designs for the unmanned, reusable vehicle were developed in three stages: selection of project requirements and success criteria, formulation of a specification list, and the creation of alternatives that would satisfy the standards set forth by the design team and their sponsor. The design team selected a Chain and Bar Shot method for deorbiting debris in earth orbit. The De-orbiting Vehicle (DOV) uses the NASA Orbital Maneuvering Vehicle (OMV) as the propulsion and command modules with the deorbiting module attached to the front
    corecore