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ABSTRACT 

 

This paper discusses the use of solar radiation pressure (SRP) augmented deorbiting to passively 

remove small satellites from high altitude Sun-synchronous orbits. SRP-augmented deorbiting 

works by deploying a light-weight reflective inflatable device to increase the area-to-mass-ratio of 

the spacecraft. The interactions of the orbital perturbations due to solar radiation pressure and the 

Earth’s oblateness cause the eccentricity of the orbit to librate at a quasi-constant semi-major axis. 

A large enough area-to-mass-ratio will ensure that a maximum eccentricity is reached where the 

spacecraft will then experience enough aerodynamic drag at the orbit pericentre to deorbit. An 

analytical model of the orbital evolution based on a Hamiltonian approach is used to obtain a first 

guess for the required area-to-mass-ratio to deorbit. This first guess is then used in a numerical 

propagation of the orbital elements using the Gauss’ equations to find the actual requirements as a 

function of altitude. The results are discussed and altitude regions for Sun-synchronous orbits are 

identified in which the proposed method is most effective. Finally, the implementation of the device 

is discussed. It is shown that passive solar radiation pressure deorbiting is a useful alternative to 

propulsive end-of-life manoeuvres for future high altitude Sun-synchronous missions. 

1 INTRODUCTION 

In 1993 the Inter-Agency Space Debris Coordination Committee was formed and issued guidelines 

for the mitigation of space debris which demands a removal of any spacecraft from certain 

protected regions within 25 years after the end of operations [1]. The most congested orbits are Sun-

synchronous orbits (SSO). These are high inclination, retrograde Low Earth Orbits (LEO) with a 

progression of the line of nodes due to planetary oblateness which matches the precession of the 

Sun-line due to the Earth’s motion around the Sun. The orbit plane thus keeps the same orientation 

with respect to the Sun. The most popular SSOs are dawn/dusk and noon/midnight orbits. The latter 

offer favourable lighting conditions with short shadows throughout the year. Dawn/dusk orbits are 

eclipse-free.  

 

The most conventional methods approaches to orbit removal are passive orbit decay due to drag and 

a propulsive end-of-life manoeuvre. Without the use of drag-augmenting structures, the former only 

works in lower LEO orbits. Propulsive methods can pose problems for small satellites which often 

do not incorporate a propulsion system. Clearly, they also require more propellant the higher the 

orbit altitude and can quickly become infeasible for low specific impulse thrusters. 

 

Passive deorbiting technologies which have previously been suggested either make use of 

aerodynamic [2-5] or electrodynamic drag forces [6-8]. Drag augmented deorbiting (DAD) works 

by increasing the spacecraft area-to-mass-ratio and thus increasing the rate of loss of orbital energy 
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due to atmospheric drag. Electrodynamic Tethers (EDT) are deployable conductive tethers. The 

movement of the EDT through the Earth’s magnetic field induces a current in the tether. The 

current results in a Lorentz force, which alters the orbital energy over time. Both effects decrease 

rapidly with increasing distance from the Earth. DAD is not feasible for altitudes beyond about 

1000 km. EDTs are dependent on the Earth’s magnetic field and are sensitive to initial orbital 

inclination. They work best in equatorial orbits and decrease in efficiency with increasing 

inclination and are unreliable above 75 degrees. Thus, neither method is applicable to high altitude 

Sun-synchronous orbits. 

 

SRP-augmented deorbiting can provide a passive end-of-life solution for these orbits. Akin to the 

DAD method, a large reflective deployable structure is used to increase the spacecraft area-to-mass-

ratio. Then, the combined effects of SRP and the J2 perturbation cause an increase in orbital 

eccentricity to lower the orbit perigee and so induce air drag. SRP-augmented deorbiting was 

initially introduced as an analytical solution for planar orbits [9]. The analytical model which 

neglects the obliquity of the equator over the ecliptic has then been verified numerically and 

extended to inclined Medium Earth Orbits (MEO) [10]. This paper focuses on the feasibility of the 

strategy for deorbiting high altitude Sun-synchronous orbits. For this problem a new specialised 

analytical model is derived and then compared to numerical solutions. First, however, a summary of 

the previous work on SRP-augmented deorbiting is given. 

2 SRP-AUGMENTED DEORBITING 

SRP-augmented de-orbiting exploits the effect of solar radiation pressure (SRP) and Earth 

oblateness in combination with aerodynamic drag to passively de-orbit a satellite within a given 

time after the end-of-life. This is achieved by making use of the interaction between the SRP and J2 
effect to increase the eccentricity of an initially circular in-plane orbit until the perigee reaches an 

altitude at which the aerodynamic drag causes the spacecraft to de-orbit. The orbital evolution can 

be divided into two phases as visualised in Figure 1.  

 

Figure 1: The two phases of the de-orbiting manoeuvre. In this example the initial orbit altitude was 7000 km and the 

effective are-to-mass-ratio 3 m
2
/kg. 

 

The first phase takes up about 90% of the total manoeuvre time. In phase one, solar radiation 

pressure is dominant over drag and is exploited to increase the orbit eccentricity at a quasi-constant 

semi-major axis until drag becomes the dominant force. Then phase 2 begins in which aerodynamic 



The 4S Symposium 2012 – C. Lücking 3 

drag decreases the orbital energy, and thus the semi-major axis of the spacecraft, and the 

eccentricity at the same time so that the perigee altitude is kept near constant. In the very last period 

of the manoeuvre the orbit is quasi-circular and at an altitude where drag decreases the orbit altitude 

rapidly. At this stage the device acts in the same way as drag-augmenting devices would. Solar 

radiation pressure is at this point negligible compared to the drag force. 

 

SRP-augmented deorbiting was first investigated analytically using a Hamiltonian Hplanar 

expressing the orbital evolution due to SRP and the J2 effect for equatorial orbits, when the tilt of 

the Earth’s rotational axis with respect to the ecliptic normal is neglected. 
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This expression was presented in reference [11] and it uses three parameters to describe an orbit: 

semi-major axis a, eccentricity e, and , the angle between the direction of solar radiation and the 

orbit’s perigee as seen from the centre of the Earth. Apart from the orbital parameters it is also 

dependant on the solar radiation pressure parameter  and the J2 effect parameter .  
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where n is the orbit rate of the Earth around the Sun, F is the solar radiation flux at Earth, c is the 

speed of light in vacuum, μ is the gravitational parameter of the Earth, J2 the second zonal harmonic 

coefficient of the Earth and RE the Earth’s mean radius. The defining spacecraft characteristic for 

the solar radiation pressure parameter is the effective area-to-mass-ratio cRσ, the product of cR, the 

coefficient of reflectivity, and σ, the area-to-mass-ratio. The coefficient of reflectivity depends on 

the optical properties for the device and its geometry. 

 

Using the Hamiltonian, equations were derived in reference [9] to calculate the minimum required 

area-to-mass-ratio to deorbit from a circular planar orbit of a given semi-major axis. These 

equations were validated against a numerical simulation in reference [10] in which the simplifying 

assumption of zero obliquity angle between the equator and the ecliptic was dropped. It was shown 

that the analytical expressions were reasonably accurate at predicting the behaviour for low 

inclination orbits. However, at higher inclinations they became ever more unreliable. A modified 

analytical approach is needed to investigate the application of SRP-augmented deorbiting to Sun-

synchronous orbits. 

3 ANALYTICAL MODEL 

In order to assess the problem analytically some assumptions and simplifications have to be made. 

As already assumed in equation (1), the tilt of the Earth’s axis and the effect of eclipses are 

neglected. Furthermore, out-of-plane effects are not considered in the analytical SRP model. 

Therefore, the predicted behaviour will be most accurate for a noon/midnight orbit, as this orbit 

predominantly faces the Sun edge on and thus experiences only small SRP forces along the normal 

of the orbital plane (Figure 2a). Dawn/dusk orbits however experience mainly out-of-plane forces 

(Figure 2b). 
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(a)

   

(b)

  

Figure 2: Sun-synchronous orbits: (a) noon/midnight orbit, (b) dawn/dusk orbit as seen from the direction of the Sun. 

 

The first step in the creation of a modified analytical model is to look at the components of the 

Hamiltonian for planar orbits in equation (1). The first term represents for the effect of solar 

radiation pressure and is dependent on the SRP parameter . The second term represents the effect 

of the Earth’s oblateness and is dependent on the J2 effect parameter . The final term represents the 

precession of the Earth around the Sun. 

 

For Sun-synchronous orbits the SRP term remains the same because we are neglecting out-of-plane 

forces. Sun-synchronous orbits are designed in such a way as to cancel out precession of the Earth 

around the Sun and the change in the line of nodes due to the J2 effect. This means that  = . Thus, 

the last term of equation (1) can be removed so that the second term only needs to consider the 

change in the argument of perigee. The modified Hamiltonian can be written as: 
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The Sun-synchronous inclination isync for circular orbits can be calculated for a given semi-major 

axis using the following expression: 
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With this term the following expression for sync can be found: 
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Next, the required area-to-mass-ratio for deorbiting is derived in a way analogous to reference [9]. 

The value of the Hamiltonian for a circular orbit is calculated by setting the eccentricity to zero in 

equation (4): 
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The Hamiltonian equation (4) is then set equal to equation (8) in order to isolate the phase line in 

the orbital element phase space of eccentricity e and argument of perigee  which passes through e 

= 0. As previous work has shown, the maximum eccentricity can only be reached at either  = 0 or 

 = π [9]. Thus, using equation (2) the following expression for the required effective area-to-mass-

ratio cRσ can be found: 
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The results of the analytical approach are represented in Figure 3. They are similar to those for 

planar orbits presented in reference [9], but the location of the minimum is at 4300 km rather than 

7500 km as in the planar case. 

 

 
Figure 3: The analytical results for the required effective area-to-mass-ratio cRσ to deorbit a Sun-synchronous orbit of 

given altitude. 

 

In the next section the analytical results are compared to numerical solution. It is not expected that 

the analytical prediction is very accurate as several simplifications and assumptions had to be made. 

In particular, the out-of-plane forces due to SRP were neglected. This assumption is most accurate 

for noon/midnight orbits but not even for these is the orbit normal permanently orthogonal to the 

solar radiation. Due to the tilt of the Earth’s axis, the aspect angle with respect to the Sun oscillates 
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over the year. Neither is the assumption that the orbits are Sun-synchronous throughout the orbital 

evolution accurate. As soon as the eccentricity begins to increase the Sun-synchronous inclination 

changes and a progression of the line of nodes sets in. 

4 NUMERICAL ANALYSIS 

In this model, the orbital dynamics are propagated numerically by integrating the Gauss’ equations 

in non-singular Lagrangian elements in MATLAB [12]. The use of those equations and the validity 

of the e-ϕ phase space for inclined orbits has been analysed in [13]. The numerical propagation 

considers only the perturbations of solar radiation pressure and the J2 effect. The drag effect and 

eclipses are neglected to save in computational time. The criterion for a successful deorbit is a 

perigee altitude of zero and the maximum propagation time is set to five years. 

 

In order to find the required effective area-to-mass-ratio, a numerical search was implemented. The 

scenario was simulated starting from the analytical best guess for cRσ from equation (9) and, 

depending on whether the deorbit was successful or not, a higher or lower cRσ was chosen for the 

next run. This was continued until the required cRσ was determined within an accuracy of 1 m
2
/kg. 

The results for maximum area-to-mass required for deorbiting noon/midnight orbits compared to 

the analytical prediction are shown in Figure 4. It can be seen that, as expected, the analytical model 

is not very accurate. However, the general magnitude of the results was right and also the v-shaped 

trend is noticeable. The minimum occurs at an altitude a 600 km lower than predicted by the simple 

analytical model. 

 

 
Figure 4: Analytical (black) and numerical (blue) results for the required effective area-to-mass-ratio to deorbit a Sun-

synchronous noon/midnight orbit of a given altitude. 

 

Using the method described above the required effective area-to-mass-ratio for deorbit was 

calculated for a range of initial altitudes and local times of the ascending node. For each case the 

result was found for eight different starting dates equally spread throughout the year starting from 
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the spring equinox. The mean and maximum results for noon/midnight and dawn/dusk orbits are 

shown in Figure 5. As expected the method is less effective for dawn/dusk orbits than for 

noon/midnight orbits at lower altitudes because out of plane forces are higher for dawn/dusk orbits. 

However, this difference in area-to-mass-ratio shrinks for increasing altitude. This is due to fact that 

the Sun-synchronous inclination increases with larger altitudes, and thus the orbital plane becomes 

more aligned with the equator. This means that even dawn/dusk orbits will experience stronger in-

plane SRP effects. 

 

 

Figure 5: Numerical results for the mean (solid) and maximum (dashed) required effective area-to-mass-ratio to deorbit 

from a noon/midnight (blue) or dawn/dusk (red) Sun-synchronous orbit for different initial altitudes. 

 

Figure 6 shows the required effective area-to-mass-ratio for all Sun-synchronous orbits altitudes 

between 1000 km and 5000 km. The result shown is the maximum for the different manoeuvre 

starting times throughout the year. The greatest difference between starting at different times is 

experienced by dawn/dusk orbits of altitudes between 1000  km and about 1500 km. In this region 

the results can vary by up to 50 m
2
/kg (see Figure 7). The required effective area-to-mass-ratio is 

lowest for 6:00h orbits when the manoeuvre starts in autumn and symmetrically lowest for 18:00h 

orbits when the manoeuvre starts in spring. 

 

It can be seen from both figures that SRP-augmented deorbiting is most effective and reliable for 

Sun-synchronous orbits with semi-major axes between about 2000 km and 4500 km. In this region 

the maximum required effective area-to-mass-ratio is mainly below 20 m
2
/kg and always below 40 

m
2
/kg. The sensitivity to the starting date of the manoeuvre is also low. This is an advantage when a 

fail-safe deorbiting mechanism is applied. This is a design which automatically deploys when the 

satellite’s main electronics are dead in order to avoid a failure of the end-of-life system. With 

systems which are deployed on command from ground this characteristic is irrelevant as the 

operator can simply wait until the best time to start the deorbiting manoeuvre. 
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Figure 6: Contour plot of the numerical results for the maximum required effective area-to-mass-ratio in m
2
/kg for Sun-

synchronous orbits of different altitude and local time of ascending node. 

 

 

 

Figure 7: Contour plot of the maximum difference in required effective area-to-mass-ratio in m
2
/kg for Sun-

synchronous orbits of different altitude and local time of ascending node depending on the time of the year the 

manoeuvre is initiated. 
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5 VERIFICATION 

In this section the numerical results presented in the previous section are verified using Satellite 

Tool Kit (STK v9.2.2). This is necessary to test the assumption that perturbations other than SRP 

and the J2 effect and eclipses can be neglected when performing a rough analysis of SRP-

augmented deorbiting. The propagation in STK was performed with the HPOP propagator and 

including aerodynamic drag, the Earth gravitational harmonics up to 21
st
 order, and third body 

perturbations by the Sun and the Moon in addition to SRP and the J2 effect. Three different 

scenarios were tested (see Figure 8). 

 

 

Figure 8: The three test case Sun-synchronous orbits with different initial altitudes and local times of the ascending 

node. 

5.1 Low altitude test case 

For the first test case a noon/midnight Sun-synchronous orbit with an altitude of 1000 km was 

chosen. The results of the numerical model predict a required effective area-to-mass-ratio of 35 

m
2
/kg for this orbit. When a spacecraft with these characteristics is propagated in STK it deorbits 

within only two months. This is due to the strong effect of drag which was neglected in the 

numerical model but which affects a spacecraft of the given area-to-mass-ratio even at 1000 km 

altitude. To verify the same simulation was run without the effect of SRP and a similar deorbit time 

was recorded. 

 

To assess by how much the area-to-mass-ratio can be decreased owing to aerodynamic drag the 

scenario was run again with area-to-mass-ratios of 15 m
2
/kg, 5 m

2
/kg and 1 m

2
/kg. The deorbiting 

was successful within 5 years for the first two cases and unsuccessful for the last. In the case of the 

5 m
2
/kg spacecraft the manoeuvre was completed within 500 days. Figure 9a shows the results for 

the perigee altitude and the semi-major axis throughout the manoeuvre. The effect of SRP which 

causes the eccentricity to librate can be seen in the periodic variation in perigee altitude while the 

decline in semi-major axis is more uniform. The same simulation was then run again, neglecting 

solar radiation pressure. In this case the spacecraft did not deorbit within the same time span as can 

be seen in Figure 9b. 
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The evolution of the altitude as seen in Figure 9a is not nearly strong enough to bring the perigee 

down into the lower atmosphere or to a zero altitude as required in the MATLAB simulation. But it 

is enough to periodically increase the effect of drag and thus speed up the final decay. This means 

that for the lower altitudes the numerical model overestimates the required effective area-to-mass-

ratio. 

 

(a) (b) 

 

Figure 9: Evolution of the perigee altitude (black) and semi-major axis (green) of a 1000 km noon/midnight Sun-

synchronous orbit for a spacecraft with an effective area-to-mass-ratio of 5 m
2
/kg including the effect of SRP (a) and 

excluding the effect of SRP (b) computed with HPOP in STK v9.2.2. 

5.2 Medium altitude test case 

For the next test case a 2300 km dawn/dusk orbit was chosen. At this altitude the required area-to-

mass-ratio shows a local minimum for dawn/dusk orbits. The predicted required effective area-to-

mass-ratio was 10 m
2
/kg. Propagating this scenario shows that as predicted a successful deorbiting 

manoeuvre is completed within 3.5 years (see Figure 10a). 

 

Again this result is compared to a simulation in which solar radiation pressure is neglected. In this 

case drag has a minimal effect on the orbit evolution (see Figure 10b). In this figure the slight 

oscillations in perigee altitude are due to third body effects. For this scenario the numerical 

prediction is accurate and the effect of solar radiation pressure is essential to the eventual re-entry. 

 

(a)

 

(b) 

 

Figure 10: Evolution of the perigee altitude (black) and semi-major axis (green) of a 2300 km dawn/dusk Sun-

synchronous orbit for a spacecraft with an effective area-to-mass-ratio of 10 m
2
/kg including the effect of SRP (a) and 

excluding the effect of SRP (b) computed with HPOP in STK v9.2.2. 
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5.3 High altitude test case 

For the final test case a 4000 km noon/midnight orbit was chosen. The predicted required effective 

area-to-mass-ratio for this scenario is 15 m
2
/kg maximum. The simulation in STK shows that this 

prediction is justified. The manoeuvre is completed within one year (see Figure 11a). A comparison 

to the simulation without SRP shows again that the effect of solar radiation pressure is instrumental 

in the manoeuvre as the semi-major axis and eccentricity hardly vary at all in the latter case (see 

Figure 11b). 

 

(a) (b)  

Figure 11: Evolution of the perigee altitude (black) and semi-major axis (green) of a 4000 km noon/midnight Sun-

synchronous orbit for a spacecraft with an effective area-to-mass-ratio of 15 m
2
/kg including the effect of SRP (a) and 

excluding the effect of SRP (b) computed with HPOP in STK v9.2.2. 

6 DESIGN IMPLEMENTATION 

In this section possible implementations of SRP-augmented deorbiting are discussed. In the first 

part different basic design options are examined. In the second part the technology development 

efforts at the University of Strathclyde are presented and conclusions for the feasibility of an SRP-

augmented deorbiting device for CubeSats drawn from them. 

6.1 Basic design options for deorbiting device 

The main options for the shape of the device are a balloon, a cone/pyramid or a flat sail. Of these 

only the balloon is truly passive. The cone and the sail would need to be directed to face the Sun in 

order to experience the desired effect on the orbit evolution. However, the balloon would also need 

eight-times more surface material than the sail. This is due to the ratio of surface area of a sphere to 

its cross-sectional area and because of the reflection characteristics of a sphere. While a fully 

reflective, flat sail oriented normal to the incident Sunlight will have an effective coefficient of 

reflectivity of 2, a sphere will only have an effective coefficient of reflectivity of 1 and thus needs 

double the cross-sectional area. 

 

This effect is caused by the direction of the reflected light. While the radiation in the middle of the 

sphere is reflected back towards the Sun, the angle of reflection changes towards the edge of the 

sphere. When all impulses are integrated over the whole cross-section of the sphere an effective 

coefficient of reflectivity of 1 is found, regardless of the reflectivity of the surface material as long 

as it is not transmissive. For a cone the effective coefficient of reflectivity depends on the cone 

angle. A shallow cone will receive a larger impulse from the solar radiation than a steep one. 

 

The advantage of a sphere is that it has the same cross-sectional area from any aspect angle. Thus, 

after deployment and rigidisation no further control is needed. The manoeuvre will occur 
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completely passively. A flat sail would need to be controlled in order to constantly face the Sun. 

This is similar to solar sailing. However, a simpler control algorithm can be implemented because 

no orbit propagation needs to be performed on-board and the only condition is to keep the sail Sun-

pointing. Another advantage over conventional solar sailing is that no fast attitude changes need to 

be performed. 

 

A cone or pyramid is a compromise between the balloon and the sail. It requires a medium amount 

of surface material and due to its conic shape experiences the shuttlecock effect which creates an 

oscillation around the equilibrium attitude. A cone design would need a mechanism to dampen this 

oscillation. Then a constantly Sun-pointing attitude could be assured for altitudes outside the zone 

where aerodynamic drag could be felt. 

 

 0° 90° 135° 180° 45° 

 
Figure 12: Different pitch angles for a reflective cone/pyramid under the influence of solar radiation pressure [14]. 

 

A problem for the sail and the cone also arises when the spacecraft enters the drag zone. In this 

region the force of drag and the force of SRP can act from different directions. The cone would 

naturally face the combined force vector. The sail would be harder to control. If it continues to be 

Sun-pointing the evolution might differ from the one calculated in this paper. 

6.2 Development of a foldable pyramid for CubeSat deorbiting (FRODO) 

FRODO, the Foldable Reflective system for Omnialtitude DeOrbiting a deployable pyramid system 

for passive deorbiting which is currently under development at the University of Strathclyde. A 

team of students is sponsored by the European Space Agency to partake in the current REXUS 

sounding rocket mission. Their experiment consists of two ejectable CubeSat modules which will 

carry novel deployable space structures for testing in near vacuum milligravity conditions. One of 

these experiments is FRODO [15]. 

 

The residual air inflation method is used to deploy the device. During assembly in ambient pressure 

air is trapped within the sealed elements of the structure. In reduced pressure conditions this air 

causes the structure to deploy. A first model of the pyramid was manufactured out of 12 μm thick 

aluminium coated polyester foil using 30 μm layflat polythene for the strut elements. The resulting 

structure measured 1.78x1.78x0.51 m
3
 giving an effective area-to-mass-ratio of 5 m

2
/kg to a 1 kg 

CubeSat (see Figure 13a). The whole pyramid could be stowed inside a 10x10x2 cm
3
 volume 

achieving a packaging efficiency of about 50% (see Figure 13b). In future iterations mass savings 

can be made by using thinner Mylar (5 μm) for the surface of the structure and reducing the 

pyramid height. A quick calculation shows that using the Mylar and 20 degree slopes on the 

pyramid an effective area-to-mass-ratio of 20 m
2
/kg can be achieved with 30% of a 1U CubeSat 

volume. 
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(a)

 

 

(b)

 

 

Figure 13: FRODO, the Foldable Reflective system for Omnialtitude DeOrbiting, deployed offering 5 m
2
/kg of 

effective area-to-mass-ratio for a 1 kg CubeSat (a) and stowed inside the CubeSat structure (b) [14]. 

7 CONCLUSIONS 

SRP-augmented deorbiting has been shown to be an effective method to passively deorbit 

spacecraft from high altitude Sun-synchronous orbits. For orbits with altitudes around 1000 km it 

will speed up the orbital decay due to aerodynamic drag by causing the eccentricity to oscillate. For 

higher altitudes solar radiation pressure is the dominating factor in the deorbiting manoeuvre. SRP-

augmented deorbiting is most effective for Sun-synchronous orbits of altitudes between 2000 km 

and 4500 km. Simulations run which neglected SRP effects showed only very minor variations in 

semi-major axis and eccentricity. Moreover, deorbiting simulation performed through STK allowed 

validating the analytical model which considered only SRP and J2 effect. Different design options 

for a SRP-augmentation device were discussed. A balloon-type device would be truly passive while 

a cone or a sail offer a larger cross-sectional area in relation to surface material used. Technology 

developments at the University of Strathclyde show that a pyramid-shaped device can supply 20 

m
2
/kg effective area-to-mass-ratio when packed into 30% of the spacecraft volume. 
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