601,598 research outputs found

    Quantum transport properties of ultrathin silver nanowires

    Get PDF
    The quantum transport properties of the ultrathin silver nanowires are investigated. For a perfect crystalline nanowire with four atoms per unit cell, three conduction channels are found, corresponding to three ss bands crossing the Fermi level. One conductance channel is disrupted by a single-atom defect, either adding or removing one atom. Quantum interference effect leads to oscillation of conductance versus the inter-defect distance. In the presence of multiple-atom defect, one conduction channel remains robust at Fermi level regardless the details of defect configuration. The histogram of conductance calculated for a finite nanowire (seven atoms per cross section) with a large number of random defect configurations agrees well with recent experiment.Comment: 4 pages, 6 figure

    Evolution of proton-induced defects in a cryogenically irradiated p-channel CCD

    Get PDF
    P-channel CCDs have been shown to display improved tolerance to radiation-induced charge transfer inefficiency (CTI) when compared to n-channel CCDs. This is attributed to the properties of the dominant charge-trapping defect species in p-channel silicon relative to the operating conditions of the CCD. However, precise knowledge of defect parameters is required in order to correct for any induced CTI. The method of single trap-pumping allows us to analyse the defect parameters to a degree of accuracy that cannot be achieved with other common defect analysis techniques such as deep-level transient spectroscopy (DLTS). We have analysed using this method the defect distribution in an e2v p-channel CCD204 irradiated with protons at cryogenic temperature (153K). The dominant charge trapping defects at these conditions have been identified as the donor level of the silicon divacancy and the carbon interstitial defect. The defect parameters are analysed both immediately post irradiation and following several subsequent room-temperature anneal phases. The evolution of the defect distribution over time and through each anneal phase provides insight into defect interactions and mobility post-irradiation. The results demonstrate the importance of cryogenic irradiation and annealing studies, with large variations seen in the defect distribution when compared to a device irradiated at room-temperature, which is the current standard procedure for radiation testing

    Magnetic states of linear defects in graphene monolayers: effects of strain and interaction

    Full text link
    The combined effects of defect-defect interaction and of uniaxial or biaxial strains of up to 10\% on the development of magnetic states on the defect-core-localized quasi-one-dimensional electronic states generated by the so-called 558 linear extended defect in graphene monolayers are investigated by means of {\it ab initio} calculations. Results are analyzed on the basis of the heuristics of the Stoner criterion. We find that conditions for the emergence of magnetic states on the 558 defect can be tuned by uniaxial tensile parallel strains (along the defect direction) at both limits of isolated and interacting 558 defects. Parallel strains are shown to lead to two cooperative effects that favor the emergence of itinerant magnetism: enhancement of the DOS of the resonant defect states in the region of the Fermi level and tuning of the Fermi level to the maximum of the related DOS peak. A perpendicular strain is likewise shown to enhance the DOS of the defect states, but it also effects a detunig of the Fermi level that shifts away from the maximum of the DOS of the defect states, which inhibts the emergence of magnetic states. As a result, under biaxial strains the stabilization of a magnetic state depends on the relative magnitudes of the two components of strain.Comment: 9 pages 8 figure

    Quantitative evaluation of defect-models in superconducting phase qubits

    Get PDF
    We use high-precision spectroscopy and detailed theoretical modelling to determine the form of the coupling between a superconducting phase qubit and a two-level defect. Fitting the experimental data with our theoretical model allows us to determine all relevant system parameters. A strong qubit-defect coupling is observed, with a nearly vanishing longitudinal component. Using these estimates, we quantitatively compare several existing theoretical models for the microscopic origin of two-level defects.Comment: 3 pages, 2 figures. Supplementary material, lclimits_supp.pd

    An \emph{ab initio} study on split silicon-vacancy defect in diamond: electronic structure and related properties

    Full text link
    The split silicon-vacancy defect (SiV) in diamond is an electrically and optically active color center. Recently, it has been shown that this color center is bright and can be detected at the single defect level. In addition, the SiV defect shows a non-zero electronic spin ground state that potentially makes this defect an alternative candidate for quantum optics and metrology applications beside the well-known nitrogen-vacancy color center in diamond. However, the electronic structure of the defect, the nature of optical excitations and other related properties are not well-understood. Here we present advanced \emph{ab initio} study on SiV defect in diamond. We determine the formation energies, charge transition levels and the nature of excitations of the defect. Our study unravel the origin of the dark or shelving state for the negatively charged SiV defect associated with the 1.68-eV photoluminescence center.Comment: 8 pages, 5 figures, 1 tabl

    Finite-temperature Fermi-edge singularity in tunneling studied using random telegraph signals

    Full text link
    We show that random telegraph signals in metal-oxide-silicon transistors at millikelvin temperatures provide a powerful means of investigating tunneling between a two-dimensional electron gas and a single defect state. The tunneling rate shows a peak when the defect level lines up with the Fermi energy, in excellent agreement with theory of the Fermi-edge singularity at finite temperature. This theory also indicates that defect levels are the origin of the dissipative two-state systems observed previously in similar devices.Comment: 5 pages, REVTEX, 3 postscript figures included with epsfi
    corecore