2 research outputs found

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue

    Decentralized Inner-Product Encryption with Constant-Size Ciphertext

    No full text
    With the rise of technology in recent years, more people are studying distributed system architecture, such as the e-government system. The advantage of this architecture is that when a single point of failure occurs, it does not cause the system to be invaded by other attackers, making the entire system more secure. On the other hand, inner product encryption (IPE) provides fine-grained access control, and can be used as a fundamental tool to construct other cryptographic primitives. Lots of studies for IPE have been proposed recently. The first and only existing decentralized IPE was proposed by Michalevsky and Joye in 2018. However, some restrictions in their scheme may make it impractical. First, the ciphertext size is linear to the length of the corresponding attribute vector; second, the number of authorities should be the same as the length of predicate vector. To cope with the aforementioned issues, we design the first decentralized IPE with constant-size ciphertext. The security of our scheme is proven under the ℓ-DBDHE assumption in the random oracle model. Compared with Michalevsky and Joye’s work, ours achieves better efficiency in ciphertext length and encryption/decryption cost
    corecore