1,291,865 research outputs found

    Decay-Time Asymmetries at the B-Factories

    Full text link
    Absract (Invited talk at the X DAE High Energy Physics symposium in December 1992, held at Tata Institute of Fundamental Research, Bombay)Comment: 20pages, TIFR/TH/93-1

    Vacuum Decay in Real Time and Imaginary Time Formalisms

    Get PDF
    We analyze vacuum tunneling in quantum field theory in a general formalism by using the Wigner representation. In the standard instanton formalism, one usually approximates the initial false vacuum state by an eigenstate of the field operator, imposes Dirichlet boundary conditions on the initial field value, and evolves in imaginary time. This approach does not have an obvious physical interpretation. However, an alternative approach does have a physical interpretation: in quantum field theory, tunneling can happen via classical dynamics, seeded by initial quantum fluctuations in both the field and its momentum conjugate, which was recently implemented in Ref. [1]. We show that the Wigner representation is a useful framework to calculate and understand the relationship between these two approaches. We find there are two, related, saddle point approximations for the path integral of the tunneling process: one corresponds to the instanton solution in imaginary time and the other one corresponds to classical dynamics from initial quantum fluctuations in real time. The classical approximation for the dynamics of the latter process is justified only in a system with many degrees of freedom, as can appear in field theory due to high occupancy of nucleated bubbles, while it is not justified in single particle quantum mechanics, as we explain. We mention possible applications of the real time formalism, including tunneling when the instanton vanishes, or when the imaginary time contour deformation is not possible, which may occur in cosmological settings.Comment: 10 pages in double column format, 2 figures. V2: Further clarifications. Updated to resemble version published in PR

    Optical decay from a Fabry-Perot cavity faster than the decay time

    Full text link
    The dynamical response of an optical Fabry-Perot cavity is investigated experimentally. We observe oscillations in the transmitted and reflected light intensity if the frequency of the incoupled light field is rapidly changed. In addition, the decay of a cavity-stored light field is accelerated if the phase and intensity of the incoupled light are switched in an appropriate way. The theoretical model by M. J. Lawrence em et al, JOSA B 16, 523 (1999) agrees with our observations.Comment: submitted to Josa

    Short time decay of the Loschmidt echo

    Get PDF
    The Loschmidt echo measures the sensitivity to perturbations of quantum evolutions. We study its short time decay in classically chaotic systems. Using perturbation theory and throwing out all correlation imposed by the initial state and the perturbation, we show that the characteristic time of this regime is well described by the inverse of the width of the local density of states. This result is illustrated and discussed in a numerical study in a 2-dimensional chaotic billiard system perturbed by various contour deformations and using different types of initial conditions. Moreover, the influence to the short time decay of sub-Planck structures developed by time evolution is also investigated.Comment: 7 pages, 7 figures, published versio

    Assisted Vacuum Decay by Time Dependent Electric Fields

    Full text link
    We consider the vacuum decay by electron-positron pair production in spatially homogeneous, time dependent electric fields by means of quantum kinetic equations. Our focus is on the impact of various pulse shapes as envelopes of oscillating fields and the assistance effects in multi-scale fields, which are also seen in photons accompanying the creation and motion of pairs.Comment: 9 pages, 7 figure

    Long-time behavior of many-particle quantum decay

    Full text link
    While exponential decay is ubiquitous in Nature, deviations at both short and long times are dictated by quantum mechanics. Non-exponential decay is known to arise due to the possibility of reconstructing the initial state from the decaying products. We discuss the quantum decay dynamics by tunneling of a many-particle system, characterizing the long-time non-exponential behavior of the non-escape and survival probabilities. The effects of contact interactions and quantum statistics are described. It is found that whereas for non-interacting bosons the long-time decay follows a power-law with an exponent linear in the number of particles N\N, the exponent becomes quadratic in N\N in the fermionic case. The same results apply to strongly interacting many-body systems related by the generalized Bose-Fermi duality. The faster fermionic decay can be traced back to the effective hard-core interactions between particles, which are as well the decaying products, and exhibit spatial anti-bunching which hinders the reconstruction of the initial unstable state. The results are illustrated with a paradigmatic model of quantum decay from a trap allowing leaks by tunneling, whose dynamics is described exactly by means of an expansion in resonant states.Comment: 6 pages, added references and discussio

    Late time tails of the massive vector field in a black hole background

    Full text link
    We investigate the late-time behavior of the massive vector field in the background of the Schwarzschild and Schwarzschild-de Sitter black holes. For Schwarzschild black hole, at intermediately late times the massive vector field is represented by three functions with different decay law Ψ0t(+3/2)sinmt\Psi_{0} \sim t^{-(\ell + 3/2)} \sin{m t}, Ψ1t(+5/2)sinmt\Psi_{1} \sim t^{-(\ell + 5/2)} \sin{m t}, Ψ2t(+1/2)sinmt\Psi_{2} \sim t^{-(\ell + 1/2)} \sin{m t}, while at asymptotically late times the decay law Ψt5/6sin(mt)\Psi \sim t^{-5/6} \sin{(m t)} is universal, and does not depend on the multipole number \ell. Together with previous study of massive scalar and Dirac fields where the same asymptotically late-time decay law was found, it means, that the asymptotically late-time decay law t5/6sin(mt)\sim t^{-5/6} \sin{(m t)} \emph{does not depend} also \emph{on the spin} of the field under consideration. For Schwarzschild-de Sitter black holes it is observed two different regimes in the late-time decay of perturbations: non-oscillatory exponential damping for small values of mm and oscillatory quasinormal mode decay for high enough mm. Numerical and analytical results are found for these quasinormal frequencies.Comment: one author and new material are adde

    Electron tunneling time measured by photoluminescence excitation correlation spectroscopy

    Get PDF
    The tunneling time for electrons to escape from the lowest quasibound state in the quantum wells of GaAs/AlAs/GaAs/AlAs/GaAs double-barrier heterostructures with barriers between 16 and 62 Å has been measured at 80 K using photoluminescence excitation correlation spectroscopy. The decay time for samples with barrier thicknesses from 16 Å (≈12 ps) to 34 Å(≈800 ps) depends exponentially on barrier thickness, in good agreement with calculations of electron tunneling time derived from the energy width of the resonance. Electron and heavy hole carrier densities are observed to decay at the same rate, indicating a coupling between the two decay processes
    corecore