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Vacuum Decay in Real Time and Imaginary Time Formalisms
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1Institute of Cosmology, Dept. of Physics and Astronomy, Tufts University, Medford, MA 02155, USA and

2Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan
(Dated: August 15, 2019)

We analyze vacuum tunneling in quantum field theory in a general formalism by using the Wigner
representation. In the standard instanton formalism, one usually approximates the initial false
vacuum state by an eigenstate of the field operator, imposes Dirichlet boundary conditions on the
initial field value, and evolves in imaginary time. This approach does not have an obvious physical
interpretation. However, an alternative approach does have a physical interpretation: in quantum
field theory, tunneling can happen via classical dynamics, seeded by initial quantum fluctuations in
both the field and its momentum conjugate, which was recently implemented in Ref. [1]. We show
that the Wigner representation is a useful framework to calculate and understand the relationship
between these two approaches. We find there are two, related, saddle point approximations for the
path integral of the tunneling process: one corresponds to the instanton solution in imaginary time
and the other one corresponds to classical dynamics from initial quantum fluctuations in real time.
The classical approximation for the dynamics of the latter process is justified only in a system with
many degrees of freedom, as can appear in field theory due to high occupancy of nucleated bubbles,
while it is not justified in single particle quantum mechanics, as we explain. We mention possible
applications of the real time formalism, including tunneling when the instanton vanishes, or when
the imaginary time contour deformation is not possible, which may occur in cosmological settings.

I. INTRODUCTION

The subject of quantum mechanical tunneling is an
essential topic in modern physics, with a range of appli-
cations, including nuclear fusion [2], diodes [3], atomic
physics [4], quantum field theory [5], cosmological infla-
tion [6], etc. In the context of a possible landscape of
classically stable vacua in field theory, motivated by con-
siderations in string theory [7], it is essential to deter-
mine the quantum tunneling rate from one vacuum to
the next. This has ramifications for the stability of our
current electroweak vacuum [8], as well as for the viabil-
ity of inflationary models [9], and may have ramifications
for the cosmological constant problem [10].

In ordinary non-relativistic quantum mechanics of a
single particle, quantum tunneling can be calculated in
principle by a direct solution of the time dependent
Schrödinger equation. However, our interest here is that
of quantum field theory. In this case, a direct solution
of the Schrödinger equation is notoriously difficult, and
so approximation schemes are needed. The most famous
approximation method, which is analogous to the WKB
approximation in non-relativistic quantum mechanics, in-
volves the computation of the Euclidean instanton solu-
tion from one vacuum to another [11, 12]. This leads
to the well known estimate for the decay rate per unit
volume Γ ∝ e−SE , where SE is the bounce action of a
solution of the classical equations of motion in imaginary
time. This method is generally thought to be accurate
when the bounce action SE is large; which evidently cor-
responds to exponentially suppressed decay rates.

∗ mark.hertzberg@tufts.edu
† masaki.yamada@tufts.edu

Since the above method involves non-intuitive features,
namely a restriction to Dirichlet boundary conditions on
the field and dynamics in imaginary time, it begs the
question whether there may be other formulations of the
tunneling process. Furthermore, if one moves to more
general settings, such as in cosmology, there may not
always be the usual instanton solution, so one wonders
whether other formulations can be employed instead. In
this paper we will investigate under what circumstances
an alternative approach to tunneling, from classical evo-
lution of fields whose initial conditions are drawn from
some approximation to the initial wave-function, can pro-
vide an alternative formulation for decay.1

This work was motivated by the very interesting work
of Ref. [1]. In that work they numerically obtained a
tunneling rate from a false vacuum in 1 + 1 dimensional
spacetime by solving for the classical dynamics of a scalar
field starting from initial conditions generated by a Gaus-
sian distribution. The method was to consider many re-
alizations of initial conditions and then to calculate the
ensemble-averaged tunneling rate. For their choice of pa-
rameters they found that the tunneling rate was similar
to the one calculated by the instanton method.

This leads to several natural questions: (i) what is
the relationship between these two approaches? One is
in an imaginary time formalism, the other is in a real
time formalism; so how, if at all, are they related? (ii)
Under what circumstances are the rates comparable to
each other? (iii) Under what circumstances are these
approaches valid? It is known that the instanton method
requires the bounce action to be large to justify a semi-

1 See Refs. [13, 14] for a different approach using complex classical
trajectories.
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classical approximation, but what is the corresponding
statement for the other real time method?

In this paper, we address these questions. We will
argue that this real time analysis from classical dynam-
ics is not identical to, but is very closely related to, the
instanton tunneling process. We will show that for sim-
ple choices of parameters, the two rates are parametri-
cally similar. However, things are more complicated for
potentials with unusual features, which we will discuss,
and there can be advantages to the real time formula-
tion in special circumstances. We will make use of the
Wigner representation as it will provide a general for-
malism to cleanly identify these two complementary ap-
proaches. We will discuss under what circumstances the
classical dynamics is justified, explain why this would fail
in single particle quantum mechanics, and discuss some
cosmological applications.

Our paper is organized as follows: In Section II we re-
cap the standard instanton contribution to the decay. In
Section III we present a more general formalism, using
the Wigner representation, which allows us to describe
these two approaches within a single framework. In Sec-
tion IV we discuss the conditions under which the clas-
sical dynamics method is applicable. In Section V we
estimate and compare the tunneling rates. Finally, in
Section VI we discuss our findings.

II. STANDARD EUCLIDEAN FORMALISM

Let us begin by recapping the standard approach to
vacuum decay, which occurs within the confines of a Eu-
clidean, or imaginary time, formalism. In this approach
the decay rate can be calculated from the imaginary part
of the vacuum energy E0 as

ΓI = −2 ImE0, (1)

where

E0 = −limT→∞
lnZ

T
, (2)

and Z is defined by

Z ≡ 〈φi| e−HT |φi〉 . (3)

Here we denote the (approximate) energy eigenstate
around a false vacuum as |φi〉.2 One may neglect the

2 One may think that the imaginary part of the vacuum energy
is absent because Z defined in Eq. (3) is real. This issue has
been investigated in detail in Ref. [15, 16]. They discussed that
the contour of path integral should be deformed along a steepest
descent contour passing through the false vacuum. Fortunately,
the resulting tunneling rate can still be calculated by Eq. (5),
which is the standard formula to calculate the tunneling rate by
the instanton calculation.

quantum fluctuation around the false vacuum and ap-
proximate the energy eigenstate by the eigenstate for the

operator φ̂. In this case, Z can be written as

Z ≈
∫ φ(T )=φi

φ(0)=φi

Dφ e−SE [φ]. (4)

The path integral can be approximated by the contri-
bution from a saddle point, which is known as the in-
stanton solution. One can also calculate the Gaussian
integral for the perturbation around the instanton solu-
tion. The result is given by the well-known formula:

ΓI ∼ ImK e−SE [φbounce], (5)

where φbounce is the so-called bounce solution in an
“upside-down” potential, with V → −V . Therefore, the
decay rate can be calculated from the path integral with
imaginary time T .

Strictly speaking, however, Eq. (5) is not a tunnel-
ing rate from the false vacuum energy eigenstate because
the boundary condition for the path integral Eq. (4) im-
plies the transition between eigenstates for the opera-

tor φ̂. The difference between the energy eigenstate and

the eigenstate for the operator φ̂ is negligible only if the
zero-point fluctuation around the local minimum is much
smaller than the typical scale of the potential.

In quantum field theory, the number of effective de-
grees of freedom can be large and hence the quantum fluc-
tuations can accidentally overcome the potential barrier.
This accidental arrangement and subsequent barrier pen-
etration was seen in the simulations of Ref. [1]. Hence,
to only focus on initial conditions that are eigenstates
of the field operator, as the usual instanton approach
does, is not guaranteed to be the most natural choice of
boundary conditions. Therefore, we would like to utilize
a formalism that can accommodate general initial con-
ditions on the fluctuations for a more complete analysis
of tunneling. In the next section, we analyze tunneling
within the Wigner representation as it will allow us to
systematically study these different possibilities.

III. MORE GENERAL FORMALISM

Since vacuum decay is a time-dependent process, it is
natural to calculate it by using a real time formalism (or
Schwinger-Keldysh formalism), which can describe the
time evolution of observables. As we will see, this will
allow us to more systematically identify initial conditions
for the decay, rather than restricting to only those that
are useful in the standard imaginary time analysis.

The time evolution of the expectation value of an ob-
servable Ô can in principle be calculated from〈

Ô(t)
〉

= Tr
[
ρ̂ Ttime e

i
∫
Hdt′ Ô e−i

∫
Hdt′

]
, (6)

where ρ̂ is an initial density operator and Ttime is
Schwinger’s time-ordered operator. The operator Ô may
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be taken to be an order parameter of the phase transi-
tion. Instead, one may use an operator that gives zero
around the false vacuum and nonzero around the true
vacuum. This equation implies that the contour for the
time integral is given by the one shown in Fig. 1. We can
define two kinds of fields: forward (φf ) and backward
(φb) fields, depending on the direction of time evolution.
It is convenient to then define

φc =
1

2
(φf + φb) , (7)

πc =
1

2
(πf + πb) , (8)

φq =
1

2
(φf − φb) , (9)

πq =
1

2
(πf − πb) , (10)

where π is the canonical conjugates of the field φ. Here
φc and πc are effectively classical fields, as we will ex-
plain shortly, while φq and πq are effectively quantum
fluctuations. The path integral can then be written as〈
Ô(t1)

〉
=

∫ ∫
dφc,0dπc,0W0(φc,0, πc,0)

×
∫
Dφc(t)Dπc(t)Dφq(t)Dπq(t)OW (φc(t1), πc(t1), t1)

× exp

[
i

∫ t1

0

dt
[
2φqπ̇c − 2πqφ̇c

+HW (πc + πq, φc + φq, t)−HW (πc − πq, φc − φq, t)]] ,
(11)

where the Wigner function W0 is defined as the Weyl
transform of the density matrix ρ̂ in the field representa-
tion. It is given by

W0(φc,0, πc,0) =

∫
dφq ρ(φc,0 − φq, φc,0 + φq)e

2iπcφq .

(12)
Momentarily we focus on only one particular mode for
notational simplicity, but will generalize shortly. The
functions HW and OW are the Hamiltonian H and ob-
servable O in the Wigner representation, respectively. In
particular,

OW (φc, πc) =

∫
dφqdπq O(φc − φq, πc + πq) e

−2iφqπq ,

(13)
where O(φ, π) is the function obtained from the operator

Ô by direct substitution φ̂ → φ and π̂ → π. For related
work, see Refs. [17, 18].

A. Classical Approximation

Now we shall rewrite the above path integral by using
some approximations. We will discuss the meaning and
justification of these assumptions in the next section.

0

Re t

Im t

Forward

Backward

FIG. 1. Integration contour for the time variable in the real
time formalism.

If the quantum fluctuations are much smaller than the
classical quantities, we can approximate HW as

HW (πc + πq, φc + φq, t)−HW (πc − πq, φc − φq, t)

' 2πq
∂HW (πc, φc, t)

∂πc
+ 2φq

∂HW (πc, φc, t)

∂φc
. (14)

Then we can perform the integrations over φq and πq,
which give delta functions of the form

δ

(
dφc
dt
− ∂HW

∂πc

)
δ

(
dπc
dt

+
∂HW

∂φc

)
. (15)

This means that indeed {φc, πc} obey the classical equa-
tion of motion. The integrals over the fields are deter-
mined by the delta functions and the result is given by〈
Ô
〉
'
∫
dφc,0dπc,0W0(φc,0, πc,0) OW (φc, πc, t)|classical .

(16)

If the initial quantum fluctuations are sufficiently small
at the false vacuum, we can approximate the potential
by a quadratic form; we will return to discuss under
what conditions this approximation is valid. We de-
note the mass parameter as m at the false vacuum, i.e.,
V ′′(0) = m2. The ground state wave-function can then
be approximated as

ψ0 '
1

(π/ωk)1/4
e−ωk|φc,0|2/2, (17)

where ωk =
√
m2 + k2. The initial Wigner distribution

W0 can be then estimated by the one for a free field:

W0 =

∫
dφq,0 ψ

∗ (φc,0 + φq,0)ψ (φc,0 − φq,0) e2iπc,0φq,0

∝ exp

[
−
(
ωk|φc,0(k)|2 +

1

ωk
|πc,0(k)|2

)]
. (18)

This can be regarded as a probability distribution for the
initial field values, with φ and π treated as independent
random variables. For quantum field theory in d + 1
spacetime dimension, the full result for the initial Wigner
distribution is approximated as

W0 ∝ exp

[
−
∫

ddk

(2π)d

(
ωk|φc,0(k)|2 +

1

ωk
|πc,0(k)|2

)]
,(19)

where we integrate over all k-modes.
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We can calculate the tunneling rate by evolving the
classical dynamics with an initial condition generated
from Eq. (19). Since the initial condition is generated
randomly by the Wigner distribution, we should perform
a large number of simulations to obtain a statistically
reasonable result. The tunneling rate is therefore given
by the statistical average of many realizations as done
in Ref. [1]. We note that the system has a translational
symmetry and there is no strong correlation between two
distant points. This implies that we can replace the en-
semble average of many simulations by the spatial aver-
age of a single simulation with a large simulation box.

The operator Ô should be taken such that it is nonzero
around the true vacuum and is zero around the false vac-
uum. This can be realized by, e.g., taking O = θ(φ−φ∗)
with φ∗ being the field value at the other side of the
potential barrier. Then we can count the number of nu-
cleated bubbles per unit space as an exponential function
of time. The tunneling rate is the coefficient of the time
variable at the exponent [1].

B. Relation to the Instanton Calculation

The same result can be obtained by the saddle point
approximation for Eq. (11). In the classical limit, the
path integral can be approximated by saddle points of
the exponent of the integrand. Varying it with respect
to φc, φq, πc, and πq, and eliminating πc and πq, we
obtain

2φ̈c = −V ′(φc + φq)− V ′(φc − φq), (20)

2φ̈q = −V ′(φc + φq) + V ′(φc − φq). (21)

One of the solutions to this equation is φq = 0 with
φc being the solution to the usual classical equation of
motion, with initial conditions drawn from the initial
Wigner distribution. This saddle point corresponds to
Eq. (16). We refer to this as the real time formalism
from classical dynamics, seeded by non-trivial initial con-
ditions that ultimately arise from a choice for the initial
wave-function. Indeed we note that this process is ab-
sent if we were simply to assume trivial initial conditions
W0 = δ(φc,0)δ(πc,0), which would be the “purely” classi-
cal behavior.

Now we show that there is another, related, contri-
bution to Eq. (11) that is non-zero even if we were to
set φc,0 = πc,0 = 0. Assuming W0 = δ(φc,0)δ(πc,0), we
rewrite Eq. (11) as〈

Ô
〉

=

∫
DφfDφbOW ((φf + φb)/2, t1)

× exp [iSf − iSb] , (22)

where we assume that OW is independent of πc and

Sf,b = i

∫ t1

0

dtLf,b, (23)

are the actions for the forward and backward fields, re-
spectively. This can be rewritten as〈

Ô
〉

=

∫
DφOW (φ(t1), t1) exp [iS] , (24)

by defining t′ ∈ (−t1, t1) and φ(t) = φf (t) for t ∈ (0, t1)
and φ(t) = φb(−t) for t ∈ (−t1, 0). This path integral
can be calculated by the standard instanton method by
deforming to imaginary time. Since we assume φc,0 =
πc,0 = 0 in this calculation, this saddle point corresponds
to the transition from vanishingly initial classical fields.
It also corresponds to vanishing initial quantum field for
φq = 0, though it leaves the initial condition for the
quantum field π unspecified. This is identical to the one
calculated by the instanton method discussed earlier in
Section II. It is therefore associated with going from a
field eigenstate with Dirichlet boundary conditions and
again returning, in imaginary time, to a field eigenstate
with Dirichlet boundary conditions. It is the so-called
bounce solution in imaginary time. Importantly, the dif-
ference from the saddle point solution corresponding to
Eq. (16) is the initial condition (or the boundary condi-
tion at t = 0).

Let us comment on how to rotate the time variable
in the imaginary space. If we naively take φq = 0 in
Eq. (11), the exponent vanishes. This is not consistent
with Eq. (24), where the action does not vanish and gives
the Euclidean action in the imaginary time. This incon-
sistency comes from the naive analytic continuation of
the time variable. We can use the epsilon prescription to
specify a possible way to change the integration contour
in the imaginary space. The Hamiltonian should include
an imaginary mass term that specify the way to change
the integration contour. Therefore the time variable for
the Hamiltonian for φf should be rotated in the opposite
way to the one for φb. This is the reason that we obtain
a nonzero exponent even if we take φq = 0 in Eq. (11).
Later we will comment on more general situations, which
may occur in cosmology, where this rotation to imaginary
time may be more problematic.

C. Comparison

In summary, there are two basic sets of initial con-
ditions one may utilize to implement the saddle point
for the path integral Eq. (11). The first one is given by
Eq. (16), where the initial condition is given by some
approximation to the initial wave-function and the time
evolution is purely given by the classical equation of mo-
tion. The second one is given by the saddle point of
Eq. (24), where the initial condition is φ = 0 and the
time evolution is deformed into the complex plane to the
imaginary time axis.

At first sight it may seem surprising that the first
should be associated with tunneling. But indeed tunnel-
ing can occur because of the non-trivial initial conditions
can make for rare events to take place even within the
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framework of classical dynamics. This is the tunneling
process that was calculated in Ref. [1]. In this sense, this
contribution is complementary to the instanton contribu-
tion, though in appropriate regimes that we will discuss,
they can approximate each other quite well.

IV. CONDITIONS FOR THE CLASSICAL
APPROXIMATION

In this section we discuss conditions to calculate a tun-
neling rate by Eq. (16) in the context of quantum field
theory. We first note that the distinction between quan-
tum and classical mechanics comes from the commuta-
tion relation for quantum operators. In particular, the
commutation relation between creation and annihilation
operators is given by

âiâ
†
j − â

†
i âj = δij . (25)

However, the effect of the right-hand side is negligible

when the occupation numbers
〈
â†i âi

〉
are large. We then

expect that the high occupancy limit corresponds to the
classical limit of quantum systems. This implies that the
approximation Eq. (14) is justified when the number of
particles in the system is extremely large.

In Ref. [19], we have shown that the expectation val-
ues of quantum operators are approximated by a corre-
sponding classical ensemble average over many classical
micro-states, with initial conditions drawn from the ini-
tial quantum wave-function. Eq. (16) is a mathematical
expression of this statement. It can be understood as
an extension of this discussion to the quantum regime,
where the initial state is not a high occupancy state, but
a (quasi) vacuum state with zero point fluctuations. Due
to the possible production of bubbles, which arises due to
rare accidental arrangements from the non-trivial initial
conditions, the occupation number can be large enough
to use the classical description.

In this case, the approximation φq � φc is satisfied,
except for the initial condition, and we can evolve φc by
the classical equation of motion. In the regime before the
tunneling, φq � φc may not be satisfied. However, we
can still use Eq. (16) if the amplitude of fluctuations is
small enough to neglect terms in the potential that are
higher-order than quadratic. This is because the Wigner
approximation is exact for the free-field theory. We will
discuss situations in which the neglecting of these higher
order terms may not be valid.

A. Tension and Pressure

Eq. (16) can describe the classical dynamics of the
field after the bubble nucleation. This is different from
the instanton method, where we need to connect the
Lorentzian and Euclidean regimes to describes the dy-
namics of the bubble after nucleation. The tunneling

process calculated by Eq. (16) can therefore describe the
tunneling process itself as well as the dynamics of nucle-
ated bubble after the nucleation.

Since the nucleated bubble obeys the classical equa-
tions of motion, its behavior can be understood easily,
particularly for the thin-wall case. The bubble wall tends
to shrink to a point due to its tension while it tends to
expand due to the pressure of the vacuum energy. As we
evolve the field classically with an initial condition, a lot
of small bubbles are nucleated, but most of them do not
have enough pressure to overcome the tension of the wall.
In order for the bubble to expand after the nucleation,
the pressure of the vacuum energy should overcome the
tension of the bubble. For a thin-wall bubble, this re-
quires

Ad−1R
d−1σ . VdR

dε, (26)

where R is the radius of the bubble, σ is the tension of
the wall, and ε is the difference of the vacuum energy.
Here we define area and volume factors in the unit d-
dimensional sphere:

Ad−1 ≡
2πd/2

Γ(d/2)
, (27)

Vd ≡
πd/2

Γ(d/2 + 1)
. (28)

A similar type of inequality is expected to be satisfied for
a thick-wall bubble.

B. Occupation Number

Now we examine under what conditions the occupa-
tion number of the quanta describing nucleated bubbles
is much larger than unity. In this case the nucleated bub-
ble is essentially coherent and can be treated within the
framework of classical field theory.

We estimate the occupation number of nucleated bub-
ble in two simple cases. First we consider the case where
the scalar potential is described by typical values of cur-
vature scale around vacua m, field value v, height of the
potential barrier Vh, and the difference of the vacuum en-
ergy ε (see Fig. 2). We note that Vh must be smaller than
of order v2(d+1)/(d−1) for d > 1 because of the unitarity
bound (e.g., in 3 + 1 dimensions this is related to the
familiar idea that the quartic coupling λφ4 obeys λ . 1
to be in a weakly coupled regime).

1. Thin-Wall

We assume ε � Vh and use the thin-wall approxima-
tion for now. In this case, the wall tension is given by

σ =

∫
dφ
√

2V ∼ v
√
Vh. (29)
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FIG. 2. Schematic picture of a typical potential and parame-
ters describing its shape.

Using Eq. (26), we obtain a typical radius of the nucle-
ated bubble as

Rb ' d
σ

ε
. (30)

Let us first report on the Euclidean instanton action
associated with the bubble, as it is the standard quantity
to compute tunneling in the literature, as

SE '
2Rdσ

d+ 1
' 2dd

d+ 1

σd+1

εd
(31)

∼
(
Vh
ε

)d(
v2(d+1)/(d−1)

Vh

)(d−1)/2

. (32)

However, in order to justify the alternative real time
tunneling from classical dynamics, we need to compute
the bubble’s occupancy number. We define it by the
gradient energy of the bubble in the unit of m:

N ≡ 1

m

∫
ddx

[
1

2
(∇φ)

2

]
bubble

(33)

' Ad−1R
d−1σ

m
. (34)

(if we were to reinstate factors of ~, the actual occupancy
number would be this divided by ~). It is roughly given
by

N ∼
(
Vh
ε

)d−1(
v2(d+1)/(d−1)

Vh

)d/2−1( v

m(d−1)/2

)2/(d−1)

,

(35)
Note that every factor on the most right-hand side
is larger than unity for weakly coupled field theories,
so the occupation number can in fact be quite large
N � 1. (Note that for d = 1, it simplifies to N ∼
v2 (Vh/(m

2v2))1/2.)

2. Thick-Wall

The above suggests that the occupation number can be
as small as of order unity when the vacuum energy is not

degenerate and the difference of the VEV is as small as
m. This implies that the bubble is a thick-wall type and
so we should re-examine the above analysis. Here the
scalar self coupling could be as large as O(1). We check
that the occupation number is larger than unity in this
extreme case, too. We consider the following potential:

V (φ) = U0

[
1

2

(
φ

Λ

)2

+
λ3

3!

(
φ

Λ

)3
]
, (36)

where U0 and Λ (U0 . Λ2(d+1)/(d−1)) are dimension-full
parameters and λ3 (. O(1)) is a dimensionless constant.
Since φ = 0 is a false vacuum, it can tunnel to the other
side of the potential hill. The tunneling action and the
occupation number are given by

SE ' cSλ−2
3 Ad

(
Λ2(d+1)/(d−1)

U0

)(d−1)/2

, (37)

N ' cNλ−2
3 Ad−1

(
Λ2(d+1)/(d−1)

U0

)(d−1)/2

, (38)

where the numerical constants are given by cS ' 4.1×10
and cN ' 1.0 × 102 for d = 3. Even in this extreme
case, the tunneling action and the occupation number
are larger than O(10/λ2

3). This justifies that the nu-
cleated bubble can be described classically (or a scalar
condensate).

C. Single Particle Quantum Mechanics

One may wonder if these arguments can extend to
the problem of single particle tunneling in ordinary non-
relativistic quantum mechanics. In this case there is ob-
viously no such thing as a “bubble” that can be formed.
So there is no obvious sense in which there is any object
at high occupancy.

Nevertheless, we can formally view this problem as
quantum field theory in 0 + 1 dimensions. So, for the
sake of completeness, let us formally take the result in
Eq. (35) and take d→ 0. Then we formally obtain

N ∼ ε

m
. (39)

Now we should note that in this case m, which is the
(square root) of curvature of the potential in quantum
field theory at the false vacuum, is just the characteris-
tic frequency of oscillation of the particle ω0 around the
meta-stable minimum in quantum mechanics.

However, what is important is that in quantum me-
chanics, energy conservation tells us that the tunneling
process requires that the particle tunnel to a point at
the same potential energy as its starting values. Hence,
ε here should be the potential height difference, so it is
in fact just ε = 0. This implies N = 0. So there is no
sense in which one is at high occupancy. This means that
this procedure of sampling from some Gaussian approxi-
mation to the wave-function and using this to determine
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tunneling will typically fail in ordinary quantum mechan-
ics. Conversely, it can be applicable in field theory in
higher dimensions with bubbles of high occupancy, as we
discussed above.

Furthermore, in single particle mechanics, with a con-
fining potential, the system does not exhibit ergodicity.
On the other hand, some ergodicity is exhibited in the
field theory, providing the adequate time evolution for
the development of bubbles over time as the system ex-
plores phase space.

V. TUNNELING RATE

Now we shall compare the tunneling rate (per unit vol-
ume) via the standard Euclidean instanton to the tun-
neling rate via classical dynamics with initial conditions
drawn some approximation to the wave-function. The
latter one can be estimated in the following way.

Ideally the relevant initial fluctuations that ultimately
lead to the formation of the bubble are sufficiently small
that the potential can be approximated to be a quadratic
form around a false vacuum; we will revisit this shortly.
Then the initial distribution of fluctuations is given by
the Wigner distribution of a free massive scalar field with
mass m around the false vacuum Eq. (19). This distribu-
tion does not change much even if we allow the field to
classically evolve in time. The tunneling rate can there-
fore be estimated by the probability that φc(k) and πc(k)
are large enough to nucleate a classical bubble. A classi-
cal bubble that expands after the nucleation must satisfy
the condition Eq. (26) and hence its radius must be larger
than Rb ∼ σ/ε.

Now in order to completely determine the probability
for tunneling, one should perform a simulation of this
non-linear system of classical equations of motion, with
the appropriate initial conditions specified above. How-
ever, we can give an estimate of the probability of bubble
formation by utilizing the initial wave-function’s statisti-
cal distribution as a guide; we will return to this shortly.
In order to form a bubble there are two conditions that
need to be satisfied: (a) the field need’s to be on the
far side of the barrier and (b) the bubble needs to have
sufficient energy to avoid collapse. Let us estimate these
probabilities in turn

First, in order for the bubble to be on the other side
of the barrier, we need that the field value in position
space obeys φc & v. In the k-space representation this

condition means that we need φc(k) > φ
(th)
c (k) where

φ(th)
c (k) =

∫
ddx eikxφ(x)

∣∣∣∣
bubble

∼ Rdb v, (40)

for a bubble of radius Rn to be nucleated. The probabil-
ity Pa that φc(k) exceeds this threshold can be estimated
from the Wigner distribution as

− lnPa ∼
∫

ddk

(2π)d
ωk|φ(th)

c (k)|2 ∼ ωb v2Rdb , (41)

where ωb =
√
m2 + k2

b ∼
√
m2 +R−2

b is some charac-

teristic frequency, associated with the bubble associated
with a characteristic wavenumber kb ∼ 1/Rb.

However, this is not a sufficient condition for nucle-
ation, because if the bubble appears on the other side of
the barrier with arbitrarily low energy then it can col-
lapse. Suppose that a small bubble with radius Rini and
kinetic energy Rdiniπ

2
c forms due to fluctuations. The ki-

netic energy must be larger than the energy of the bubble
with radius Rb so that the bubble can expand after the

nucleation. This means we need πc > π
(th)
c where

Rdini

(
π(th)
c

)2

∼ Rdb ε. (42)

Note that this π
(th)
c is the conjugate momentum in po-

sition space. It can be written in terms of π(k) in the

momentum space as π
(th)
c = 1/(2π)d

∫
ddke−ikxπc(k) ∼

π
(th)
c (k ∼ 1/Rini)R

−d
ini . The probability Pb to have suffi-

cient energy can then again be estimated from the Wigner
distribution as

− lnPb ∼
∫

ddk

(2π)d
1

ωk
|π(th)
c (k)|2 ∼ ε

ωb
Rdb . (43)

A. Tunneling Rate

According to the Wigner representation, the variables
φc and πc are taken as independent random variables.
This says that the probability that both (a) and (b) oc-
cur is the product Pa Pb. This allows us to estimate the
tunneling rate (per unit volume) within this real time
formalism as

ΓR ∼ cR e−γR , (44)

with

γR = aωb v
2Rdb + b

ε

ωb
Rdb (45)

where a and b are O(1) prefactors.
We can compare this to the usual result for tunnel-

ing using the Euclidean imaginary time formalism given
earlier in Eq. (5) as

ΓI ∼ cI e−γI , (46)

with

γI = SE ∼ εRd+1
b . (47)

The instanton rate is calculated for the thin-wall case,
but the result is not qualitatively different for the thick-
wall case once we identify ε as the difference of the vac-
uum energy between the false vacuum and the tunneling
point. Since this involves an extra factor of Rb compared
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to the scaling in γR, we need an estimate for the bubble
radius, which is roughly

Rb ∼
v
√
Vh
ε

, (48)

This allows us to make the estimate

γI ∼ v
√
VhR

d
b , (49)

for the instanton tunneling exponent. In this final ex-
pression we have still kept a factor of Rdb for convenience,
since this is a common factor that appears in Eq. (45)
also.

B. Examples

We now use the above results to compare the tunnel-
ing rates that we have estimated in these different for-
malisms.

1. Weakly Broken Z2 Symmetry

Let us consider a potential of the form

V (φ) = λ(φ2 − v2)2 + δV (φ), (50)

where δV (φ) is a term that weakly breaks the Z2 sym-
metry. This potential is similar to the kind of poten-
tial shown in Fig. 2 with Vh ∼ m4/λ. In this case the
bubble thickness is approximately set by the Compton
wavelength as λC ∼ 1/m. However the bubble radius
is at least this large, i.e., mRb & 1. This ensures the
frequency ωb can be approximated by the mass ωb ' m.
By noting that ε is bounded to be of the order of or
much smaller than V ∼ v2m2, we can conclude that the
probability Pa . Pb. Hence the rate γR is approximated
as

γR ∼ mv2Rdb . (51)

Then from Eq. (49), with Vh/m ∼ mv2, we have γI ∼ γR.

2. SM Higgs

As another example, let us consider the Higgs poten-
tial in the minimal SM. Upon RG running of the Higgs
self-coupling λ, the top mass, and other couplings, one
finds that the Higgs potential turns over and then goes
negative. This happens at around v ∼ 1011 GeV, or so.
In this example, the potential is dominated by the quar-
tic term near the tunneling point. In this case, we can
use the above formula by taking ε → Vh ∼ λ v4. The
bubble radius is now of order or larger than

Rb ∼
1√
λ v
∼ 10−10 GeV−1, (52)

(using λ ∼ 0.01 in this regime). This radius is much
much smaller than the Compton wavelength of the Higgs
which is m−1 ∼ 10−2 GeV−1. Hence now we are in a
regime in which ωb ∼ 1/Rb. In this regime, both Pa and
Pb are comparable, and they both give

γR ∼
1

λ
, (53)

(we naturally focus here on the physical case of 3+1
dimensions). This is comparable to the instanton rate
γI ∼ 1/λ, so we again have γI ∼ γR.

We note that in this case withRb � m, giving ωb � m,
and probing deep into the quartic term in the potential,
it was not guaranteed that the Gaussian approximation
based on the free theory would suffice. However, para-
metrically it is of the right order.

3. Flat Hill-Top

Suppose the hill-top is very flat, moreso than it appears
in Fig. 2. To be clear, let us imagine that it is so flat that
Vh � m2v2, which would be the naive value based on di-
mensional analysis. Such a potential is perhaps unusual
from the microscopic point of view, but it is allowed in
principle. In this case the instanton gives an exponent
(normalized to bubble volume) that is linear in the bar-
rier width γI/R

d
b ∝ v. On the other hand, if we turn

to the real time formalism we obtain different estimates.
From Eq. (43) the contribution from the kinetic energy
effect gives γR/R

d
b ∝ v0, which is too small. On the other

hand, from Eq. (41) the contribution from the need to be
on the other side of the barrier gives γR/R

d
b ∝ v2, which

is too large.

In this case, the Gaussian approximation for the initial
wave-function is not accurate, since it assume that the
fields mass is m, but for such a potential, the effective
mass in the barrier is smaller. Instead we need to al-
ter our simple estimates. We need to essentially replace
the frequency of the bubble by some appropriate effec-
tive mass, from the effective curvature of the potential,
namely meff ∼

√
Vh/v. This leads to

− lnPa → meff v
2Rdb ∼ v

√
VhR

d
b , (54)

which is indeed of the order of the instanton rate.

On the other hand if we persist with the original
Wigner distribution, we believe that it is plausible that
a simulation can arrive at roughly the correct tunnel-
ing rate anyhow. This is because even though the ini-
tial distribution is not an accurate representation of the
false vacuum eigenstate, these initial conditions may be
partially washed away in the simulation, leading to the
appropriate rate.
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VI. DISCUSSION

We have used a general Wigner representation to es-
tablish two formulations of tunneling with slightly differ-
ent boundary conditions and dramatically different dy-
namics: in addition to the usual formulation of the imag-
inary time saddle point contribution to the decay am-
plitude with Dirichlet boundary conditions on the field,
there is another real time formulation based on classical
dynamics with initial conditions set by some estimate for
the initial wave-function. While the former one is the
familiar one from the instanton action, the latter one
is an ensemble average of classical field theory dynam-
ics seeded by quantum zero point fluctuations. We note
that this ensemble average can be practically realized by
a spatial average of a single simulation by appealing to
a form of ergodic theorem. Since we use the Wigner ap-
proximation for the initial wavefunction in the real-time
approach, we do not expect that the resulting rate is
exactly the same as the one calculated in the imaginary-
time approach. However, we have checked that the ex-
ponent in the tunneling rate is parametrically the same
in both approaches in several examples.

A. Classicality

In order to justify the classicality of the field in this lat-
ter approach, the quantum fluctuations have to organize
into a bubble and the occupation number has to be much
larger than unity. This can be realized only if the degrees
of freedom in the system are large enough, as is possible
in quantum field theory, as it is for the nucleated bub-
bles. We note however that much of the universe would
remain at low occupancy, so it is not entirely guaranteed
that the classical dynamics is extremely accurate, but
perhaps only roughly accurate. Furthermore, this ap-
proach is ordinarily not valid in single particle quantum
mechanics as the notion of high occupancy there does not
seem to be valid.

One may wonder if the tunneling rate depends sen-
sitively on the initial fluctuations. This is actually the
case when the number of degrees of freedom in the sys-
tem is not much larger than of order unity. However, we
are interested in the tunneling process in quantum field
theory, where the number of relevant degrees of freedom
can be quite large. In this case, all relevant modes may
interact with each other somewhat chaotically and the
distribution will be randomized after an ergodic time.
So one expects dynamical evolution to wash away some
features of the initial condition. (We may have to wait
for a time scale longer than the time scale of oscillation
around a false vacuum so that some features of the initial
condition are washed away. This condition is similar to
T/Tslosh → ∞ for the “direct method” that was intro-
duced in Refs. [15, 16].)

However, our simple estimates for the tunneling rates
did involve a dependence on the mass of the field de-
fined around the initial false vacuum, as it affects the
initial Gaussian approximation to the wave-function. So
these simple estimates involve some sensitivity to initial
conditions, especially in the case of potentials with ex-
treme features. But in the case in which the bubble has
characteristic wavenumbers k-values (k . m), we are not
sensitive to the UV behavior of the initial conditions.
Furthermore, more general estimates could be made in
more extreme situations also.

B. Applications

As an application of these results, suppose there is an
AdS vacuum between two dS vacua. The tunneling rate
from a dS vacuum to the other dS vacuum cannot be cal-
culated by using the standard instanton method because
there is no instanton solution. However, the transition
rate must be nonzero because anything can happen in
quantum theory according to the path integral expres-
sion [20]. In fact, the “classical tunneling” discussed in
this paper is expected to give a nonzero transition rate.
This is the only practical way we are aware of to calcu-
late the transition rate in such a case. This transition
process is complementary to the standard instanton tun-
neling process. In this sense, the result gives a lower
bound on the tunneling rate.

As another application, consider a dynamical setting,
such as during preheating after inflation. In this case a
field may exhibit a strongly time dependent effective po-
tential from its interactions with the inflaton or the met-
ric etc. If such a field is also trapped in a type of false
vacuum then it may be highly non-trivial to implement
the standard instanton tunneling procedure, as this re-
quires deforming the contour to the imaginary time axis.
If there is (quasi) periodic behavior in the time domain
it will re-organize into growing exponential behavior in
imaginary time, which may be an obstruction to an effi-
cient implementation of the Euclidean instanton analysis.
Furthermore, if there is some form of non-analytic struc-
ture to the time dependence, such as from a step-like time
behavior, then this may be an obstruction to deforming
the contour. In these cases it may be more intuitive and
more practical to perform a real time analysis.
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