99,171 research outputs found

    Private Data Transfer over a Broadcast Channel

    Full text link
    We study the following private data transfer problem: Alice has a database of files. Bob and Cathy want to access a file each from this database (which may or may not be the same file), but each of them wants to ensure that their choices of file do not get revealed even if Alice colludes with the other user. Alice, on the other hand, wants to make sure that each of Bob and Cathy does not learn any more information from the database than the files they demand (the identities of which will be unknown to her). Moreover, they should not learn any information about the other files even if they collude. It turns out that it is impossible to accomplish this if Alice, Bob, and Cathy have access only to private randomness and noiseless communication links. We consider this problem when a binary erasure broadcast channel with independent erasures is available from Alice to Bob and Cathy in addition to a noiseless public discussion channel. We study the file-length-per-broadcast-channel-use rate in the honest-but-curious model. We focus on the case when the database consists of two files, and obtain the optimal rate. We then extend to the case of larger databases, and give upper and lower bounds on the optimal rate.Comment: To be presented at IEEE International Symposium on Information Theory (ISIT 2015), Hong Kon

    Multi-Gigabit Wireless data transfer at 60 GHz

    Full text link
    In this paper we describe the status of the first prototype of the 60 GHz wireless Multi-gigabit data transfer topology currently under development at University of Heidelberg using IBM 130 nm SiGe HBT BiCMOS technology. The 60 GHz band is very suitable for high data rate and short distance applications as for example needed in the HEP experments. The wireless transceiver consist of a transmitter and a receiver. The transmitter includes an On-Off Keying (OOK) modulator, an Local Oscillator (LO), a Power Amplifier (PA) and a BandPass Filter (BPF). The receiver part is composed of a BandPass- Filter (BPF), a Low Noise Amplifier (LNA), a double balanced down-convert Gilbert mixer, a Local Oscillator (LO), then a BPF to remove the mixer introduced noise, an Intermediate Amplifier (IF), an On-Off Keying demodulator and a limiting amplifier. The first prototype would be able to handle a data-rate of about 3.5 Gbps over a link distance of 1 m. The first simulations of the LNA show that a Noise Figure (NF) of 5 dB, a power gain of 21 dB at 60 GHz with a 3 dB bandwidth of more than 20 GHz with a power consumption 11 mW are achieved. Simulations of the PA show an output referred compression point P1dB of 19.7 dB at 60 GHz.Comment: Proceedings of the WIT201

    High-speed data transfer with FPGAs and QSFP+ modules

    Full text link
    We present test results and characterization of a data transmission system based on a last generation FPGA and a commercial QSFP+ (Quad Small Form Pluggable +) module. QSFP+ standard defines a hot-pluggable transceiver available in copper or optical cable assemblies for an aggregated bandwidth of up to 40 Gbps. We implemented a complete testbench based on a commercial development card mounting an Altera Stratix IV FPGA with 24 serial transceivers at 8.5 Gbps, together with a custom mezzanine hosting three QSFP+ modules. We present test results and signal integrity measurements up to an aggregated bandwidth of 12 Gbps.Comment: 5 pages, 3 figures, Published on JINST Journal of Instrumentation proceedings of Topical Workshop on Electronics for Particle Physics 2010, 20-24 September 2010, Aachen, Germany(R Ammendola et al 2010 JINST 5 C12019

    Computer/computer interface

    Get PDF
    System synchronizes data transfer between two computers by generating data strobe pulses when computers are ready for data transfer. In addition, interface filters noise by sampling
    corecore