140,408 research outputs found

    Spectral Unmixing via Data-guided Sparsity

    Full text link
    Hyperspectral unmixing, the process of estimating a common set of spectral bases and their corresponding composite percentages at each pixel, is an important task for hyperspectral analysis, visualization and understanding. From an unsupervised learning perspective, this problem is very challenging---both the spectral bases and their composite percentages are unknown, making the solution space too large. To reduce the solution space, many approaches have been proposed by exploiting various priors. In practice, these priors would easily lead to some unsuitable solution. This is because they are achieved by applying an identical strength of constraints to all the factors, which does not hold in practice. To overcome this limitation, we propose a novel sparsity based method by learning a data-guided map to describe the individual mixed level of each pixel. Through this data-guided map, the p(0<p<1)\ell_{p}(0<p<1) constraint is applied in an adaptive manner. Such implementation not only meets the practical situation, but also guides the spectral bases toward the pixels under highly sparse constraint. What's more, an elegant optimization scheme as well as its convergence proof have been provided in this paper. Extensive experiments on several datasets also demonstrate that the data-guided map is feasible, and high quality unmixing results could be obtained by our method

    Overcoming data sparsity

    Get PDF
    Unilever is currently designing and testing recommendation algorithms that would make recommendations about products to online customers given the customer ID and the current content of their basket. Unilever collected a large amount of purchasing data that demonstrates that most of the items (around 80%) are purchased infrequently and account for 20% of the data while frequently purchased items account for 80% of the data. Therefore, the data is sparse, skewed and demonstrates a long tail. Attempts to incorporate the data from the long tail, so far have proved difficult and current Unilever recommendation systems do not incorporate the information about infrequently purchased items. At the same time, these items are more indicative of customers' preferences and Unilever would like to make recommendations from/about these items, i.e. give a rank ordering of available products in real time. Study Group suggested to use the approach of bipartite networks to construct a similarity matrix that would allow the recommendation scores for different products to be computed. Given a current basket and a customer ID, this approach gives recommendation scores for each available item and recommends the item with the highest score that is not already in the basket. The similarity matrix can be computed offline, while recommendation score calculations can be performed live. This report contains the summary of Study Group findings together with the insights into properties of the similarity matrix and other related issues, such as recommendation for the data collection

    Sparsity-Based Kalman Filters for Data Assimilation

    Get PDF
    Several variations of the Kalman filter algorithm, such as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), are widely used in science and engineering applications. In this paper, we introduce two algorithms of sparsity-based Kalman filters, namely the sparse UKF and the progressive EKF. The filters are designed specifically for problems with very high dimensions. Different from various types of ensemble Kalman filters (EnKFs) in which the error covariance is approximated using a set of dense ensemble vectors, the algorithms developed in this paper are based on sparse matrix approximations of error covariance. The new algorithms enjoy several advantages. The error covariance has full rank without being limited by a set of ensembles. In addition to the estimated states, the algorithms provide updated error covariance for the next assimilation cycle. The sparsity of error covariance significantly reduces the required memory size for the numerical computation. In addition, the granularity of the sparse error covariance can be adjusted to optimize the parallelization of the algorithms

    Tracking Target Signal Strengths on a Grid using Sparsity

    Get PDF
    Multi-target tracking is mainly challenged by the nonlinearity present in the measurement equation, and the difficulty in fast and accurate data association. To overcome these challenges, the present paper introduces a grid-based model in which the state captures target signal strengths on a known spatial grid (TSSG). This model leads to \emph{linear} state and measurement equations, which bypass data association and can afford state estimation via sparsity-aware Kalman filtering (KF). Leveraging the grid-induced sparsity of the novel model, two types of sparsity-cognizant TSSG-KF trackers are developed: one effects sparsity through 1\ell_1-norm regularization, and the other invokes sparsity as an extra measurement. Iterative extended KF and Gauss-Newton algorithms are developed for reduced-complexity tracking, along with accurate error covariance updates for assessing performance of the resultant sparsity-aware state estimators. Based on TSSG state estimates, more informative target position and track estimates can be obtained in a follow-up step, ensuring that track association and position estimation errors do not propagate back into TSSG state estimates. The novel TSSG trackers do not require knowing the number of targets or their signal strengths, and exhibit considerably lower complexity than the benchmark hidden Markov model filter, especially for a large number of targets. Numerical simulations demonstrate that sparsity-cognizant trackers enjoy improved root mean-square error performance at reduced complexity when compared to their sparsity-agnostic counterparts.Comment: Submitted to IEEE Trans. on Signal Processin

    Distributed Unmixing of Hyperspectral Data With Sparsity Constraint

    Full text link
    Spectral unmixing (SU) is a data processing problem in hyperspectral remote sensing. The significant challenge in the SU problem is how to identify endmembers and their weights, accurately. For estimation of signature and fractional abundance matrices in a blind problem, nonnegative matrix factorization (NMF) and its developments are used widely in the SU problem. One of the constraints which was added to NMF is sparsity constraint that was regularized by L 1/2 norm. In this paper, a new algorithm based on distributed optimization has been used for spectral unmixing. In the proposed algorithm, a network including single-node clusters has been employed. Each pixel in hyperspectral images considered as a node in this network. The distributed unmixing with sparsity constraint has been optimized with diffusion LMS strategy, and then the update equations for fractional abundance and signature matrices are obtained. Simulation results based on defined performance metrics, illustrate advantage of the proposed algorithm in spectral unmixing of hyperspectral data compared with other methods. The results show that the AAD and SAD of the proposed approach are improved respectively about 6 and 27 percent toward distributed unmixing in SNR=25dB.Comment: 6 pages, conference pape

    Sparsity and morphological diversity for hyperspectral data analysis

    Get PDF
    Recently morphological diversity and sparsity have emerged as new and effective sources of diversity for Blind Source Separation. Based on these new concepts, novelmethods such as Generalized Morphological Component Analysis have been put forward. The latter takes advantage of the very sparse representation of structured data in large overcomplete dictionaries, to separate sources based on their morphology. Building on GMCA, the purpose of this contribution is to describe a new algorithm for hyperspectral data processing. Large-scale hyperspectral data refers to collected data that exhibit sparse spectral signatures in addition to sparse spatial morphologies, in specified dictionaries of spectral and spatial waveforms. Numerical experiments are reported which demonstrate the validity of the proposed extension for solving source separation problems involving hyperspectral data

    Sparsifying the Fisher Linear Discriminant by Rotation

    Full text link
    Many high dimensional classification techniques have been proposed in the literature based on sparse linear discriminant analysis (LDA). To efficiently use them, sparsity of linear classifiers is a prerequisite. However, this might not be readily available in many applications, and rotations of data are required to create the needed sparsity. In this paper, we propose a family of rotations to create the required sparsity. The basic idea is to use the principal components of the sample covariance matrix of the pooled samples and its variants to rotate the data first and to then apply an existing high dimensional classifier. This rotate-and-solve procedure can be combined with any existing classifiers, and is robust against the sparsity level of the true model. We show that these rotations do create the sparsity needed for high dimensional classifications and provide theoretical understanding why such a rotation works empirically. The effectiveness of the proposed method is demonstrated by a number of simulated and real data examples, and the improvements of our method over some popular high dimensional classification rules are clearly shown.Comment: 30 pages and 9 figures. This paper has been accepted by Journal of the Royal Statistical Society: Series B (Statistical Methodology). The first two versions of this paper were uploaded to Bin Dong's web site under the title "A Rotate-and-Solve Procedure for Classification" in 2013 May and 2014 January. This version may be slightly different from the published versio
    corecore