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Abstract

Several variations of the Kalman filter algorithm, such as the extended Kalman filter
(EKF) and the unscented Kalman filter (UKF), are widely used in science and engineering
applications. In this paper, we introduce two algorithms of sparsity-based Kalman filters,
namely the sparse UKF and the progressive EKF. The filters are designed specifically for
problems with very high dimensions. Different from various types of ensemble Kalman fil-
ters (EnKFs) in which the error covariance is approximated using a set of dense ensemble
vectors, the algorithms developed in this paper are based on sparse matrix approximations
of error covariance. The new algorithms enjoy several advantages. The error covariance has
full rank without being limited by a set of ensembles. In addition to the estimated states, the
algorithms provide updated error covariance for the next assimilation cycle. The sparsity of
error covariance significantly reduces the required memory size for the numerical computa-
tion. In addition, the granularity of the sparse error covariance can be adjusted to optimize
the parallelization of the algorithms.

1 INTRODUCTION

For dynamical systems with numerical models, data assimilation is an estimation process of com-
bining observational data with a numerical model to obtain an estimate of the system’s state.
Data assimilation is essential to numerical weather prediction (NWP). The state estimate can
be considered as an interpolation of the sparse observational data; and it is used as the initial
condition for the numerical forecast process. If the dimension is relatively low and the data set
is small, various linear and nonlinear estimators can be found in the literature that have optimal
or suboptimal performances. However, to assimilate big data sets with models that have high di-
mensions, such as those in operational NWP systems with tens of millions of variables, achieving
reliable state estimates and error probability distributions is a challenging problem that have been
studied for decades with a huge literature.
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There are two categories of methods widely used in NWP, namely variational methods and the
ensemble Kalman filter (EnKF) [8, 3]. The former is based on a weighted least-square optimization,
such as the four dimensional variational data assimilation (4D-Var) in a fixed time window or
the three dimensional version (3D-Var) that excludes the time variable. The EnKF algorithm
is based on the Kalman filter except that the error covariance is approximated using a set of
state ensembles. 4D-Var methods are used in operational NWP systems by many meteorological
centers. While it serves as an effective method of data assimilation, 4D-Var algorithms have
difficulty to explicitly track the evolution of error covariance within its estimation process due to
outrageous computational costs and input/output (I/O) loads required by matrices of extremely
high dimensions. EnKF, on the other hand, updates information about the error covariance in
the form of ensembles. However, the number of ensemble states is significantly smaller than the
number of state variables. As a result, the rank deficiency of error covariance tends to deteriorate
the integrity of the estimation process unless remedies to the algorithm, such as localization and
covariance inflation, are applied.

Different types of Kalman filters have been developed and widely used in science and engineer-
ing applications, such as the EnKF, the extended Kalman filter (EKF) and the unscented Kalman
filter (UKF). In this paper, we introduce two algorithms of sparsity-based Kalman fillters, namely
the sparse UKF and the progressive EKF. The goal of the work is to explore innovative ideas
that take the advantage of the (almost) sparsity structure of matrices so that analysis and error
covariance can be updated effectively and efficiently without the drawback of rank deficiency. The
granularity of subproblems for the purpose of algorithm parallelization is also emphasized in the
method. The filters are developed specifically for problems with very high dimensions. Different
from EnKFs in which the error covariance is represented using a set of dense ensemble vectors, the
new algorithms in this paper are based on a sparse but full rank matrix as an approximation of
the error covariance. This is made possible because of two assumptions: (a) the error covariance
is approximately a sparse matrix; (b) the system model is component based, i.e. the state vectors
are divided into components that can be computed independently in parallel.

2 Sparse UKF

Consider a dynamical system model in which the state variable is x(t), where t = 1, 2, 3, · · ·
represents time steps. The value of observation at t = k is denoted by y(k). The system model is
defined as follows,

x(k) =M(x(k − 1)) + ηk−1, x(k), ηk−1 ∈ Rn,

y(k) = H(x(k)) + δk, yk, δk ∈ Rm,
(1)

where ηk−1 is a random variable representing the model error. Its covariance is Q. The obser-
vational error, δk, has a covariance R. In data assimilation, the goal is to estimate the value of
x(k) given the observations y(1), y(2), · · · , y(k) and the model (1). If (1) is linear and if all ran-
dom variables are Gaussian, then the Kalman filter is an optimal state estimator. For nonlinear
systems with non-Gaussian random errors, various types of Kalman filters exist in the literature
with successful applications in science and engineering. If a system has a very high dimension,
the conventional form of Kalman filter based on a dense error covariance is not applicable. In this
section, we introduce an algorithm that is a variation of UKF for problems with approximately
sparse error covariances.



In a sparse matrix/vector, most entries are zeros. In this paper, we use an underbar to
emphasize that a vector or matrix is sparse, for instance P and x. A sparse vector is associated
with an index set, denoted by I, consisting of the indices of nonzero entries. For a sparse matrix,
columns may have different numbers of nonzero entries. The largest such number is denoted
by Nsp. In sparsity-based algorithms, a full model evaluation is not always necessary. Using
a component-based model can significantly reduce the computational load. In the notation, a
component-based model has three inputs: the sparse state variable, its index, and the index of
the output state. More specifically,

x(k) =M(x(k − 1); I1; I2), (2)

where I1 is the index set of the sparse vector x(k − 1) and I2 is the index set of x(k). The model
evaluates only the entries with indices in I2, setting all other entries as zeros. Note that x(k)
is different from the full state variable x(k) because the later is, in general, a dense vector with
mostly nonzero entries. Therefore, it is important to specify the index set I2 of the sparse vector
x(k) to be evaluated using a component-based model. For simplicity, we often omit I1 in the
notation, i.e.

x(k) =M(x(k − 1); I), (3)

where I is the same as I2 in (2). Algebraic operations between sparse vectors, such as addition
and dot product, are defined in the same way as dense vectors. Thus, we may conduct operations
between sparse vectors and dense vectors, such as adding a sparse vector to a dense vector x+ y
as long as both vectors have the same dimension. A new operation, called merging, between a
sparse vector and a dense vector is defined as follows,

z = x . y,

{
ith component of z = ith component of x, if i ∈ I.
ith component of z = ith component of y, if i 6∈ I. (4)

If an operation has an underbar, it means that the evaluation is carried out only at a given index
set. For instance, given two sparse matrices A and B, then A ∗B is a different matrix from A ∗B.
The former is the conventional matrix multiplication between two sparse matrices; the later is a
matrix multiplication in which the entries in a given index set are evaluated and all other entries
are set to be zeros. Other operations, such as

√
P , are defined similarly. A summary of notations

is summarized in the following table.

2.1 The UKF

The unscented Kalman filter has been increasingly popular in engineering applications since its
introduction about twenty years ago [4, 5]. In a UKF algorithm, the error covariance is propagated
with the dynamics using a set of vectors, or σ-points denoted by xσ. Their definition is given in
(5)-(6). The σ-points are computed at each time step using a square root of the error covariance.
In most UKF applications, σ-points are computed using either Cholesky factorization or matrix
diagonalizations. In the notation, a variable with a superscript ’a’, such as xa, represents the
analysis value of the variable, i.e., the updated value based on observations. A variable with a
superscript ’b’, such as yb, represents the background, i.e., the propagated value of analysis using



Notation Definition Notation Definition

x state variable y observation variable

M model function H observation operator

n state space dimension t = 1, 2... (discrete) time variable

xσi σ-point at t = k − 1

xbi background - state vector ybi output of observation operator H(xbi)
x̄b average of xbi ȳb average of ybi
P b background - error covariance

xa analysis - state vector P a analysis - error covariance

Table 1: Notations

the system model. The algorithm is summarized as follows. At t = k − 1, suppose we have the
analysis and error covariance as well as its square root

xa(k − 1), P a(k − 1),

Xa(k − 1) =
√

(n+ κ)P a(k − 1),
(5)

where κ is a scaling factor for the fine tuning of the higher order moments of the approximation
error [4]. How to tune the value of κ for a sparsity-based UKF is an open problem that needs
further study. In this paper, κ = 0 is used in all examples. A set of σ-points is generated as
follows,

xσ0 (k − 1) = xa(k − 1),
xσi (k − 1) = xa(k − 1) +Xa

i (k − 1), 1 ≤ i ≤ n,
xσi (k − 1) = xa(k − 1)−Xa

i (k − 1), n+ 1 ≤ i ≤ 2n.
(6)

The next step is to propagate the σ-points, which represent the background at t = k. For simplicity,
the index ’k’ of all variables in the kth time-step is omitted.

xbi =M(xσi (k − 1)), ybi = H(xbi), 0 ≤ i ≤ 2n,

x̄b =
2n∑
i=0

wix
b
i , ȳb =

2n∑
i=0

wiy
b
i ,

(7)

where the weights are defined as follows

w0 =
κ

n+ κ
, wi =

1

2(n+ κ)
, (8)

for i = 1, 2, · · · , 2n. Define the variations

Xb
i = xbi − x̄b, Y b

i = ybi − ȳb. (9)



The background covariances are

P b =
2n∑
i=0

wiX
b
i (X

b
i )
T +Q,

Pxy =
2n∑
i=0

wiX
b
i (Y

b
i )T ,

Pyy =
2n∑
i=0

wiY
b
i (Y b

i )T +R.

(10)

The Kalman gain, K, satisfies the following equation,

KPyy = Pxy. (11)

The analysis is updated as follows

xa = x̄b +K(yo − ȳb),
P a = P b −K(Pxy)

T .
(12)

where yo is the observation at t = k. This completes one iteration of the filter. For the next step,
t = k + 1, go back to (5) replacing the analysis by the updated value of xa and P a.

2.2 Sparse UKF

The square root factorization of a matrix is not unique. For large and sparse matrices, various
algorithms and their implementations on different computing platforms have been studied for
many years. The literature can be traced back to the early days of electronic computers [2]. In
the case of Cholesky factorization, the square root of a sparse matrix is still sparse, although the
computation may require larger memory than the original matrix [1, 7].

A dense error covariance is intractable in computation for global models used in NWP. In the
proposed approach, we assume that P and

√
P are approximately sparse. In the algorithm, they

are replaced by their sparse approximations, P and
√
P . The indices of nonzero entries in the ith

column are denoted by Ii and Iσi , respectively. The sparsity index set of the forecast of σ-points,
i.e. the background, are denoted by Ib. Becasue P and

√
P are approximations of P and

√
P , the

sparsity patterns do not have to be exact. In fact, in the example of Lorenz-96 model presented
in the next section, we assume that Ii, Iσi and Ib equal to each other although

√
P may have a

different sparsity pattern from that of P .

Algorithm I (Sparse UKF)
Given the initial analysis,

xa(k − 1), P a(k − 1). (13)

Step 1. σ-points and forecast

Xa(k − 1) =
√

(n+ κ)P a(k − 1), sparsity index set Iσ (14)



and
xb0 =M(xa(k − 1)), yb0 = H(xb0),

xbi =M(xa(k − 1) +Xa
i (k − 1); Ibi ), ybi = H(xbi . x

b
0), 1 ≤ i ≤ n.

xbi =M(xa(k − 1)−Xa
i (k − 1); Ibi ), ybi = H(xbi . x

b
0), n+ 1 ≤ i ≤ 2n.

x̄b =
2n∑
i=0

wi(x
b
i . x

b
0), ȳb =

2n∑
i=0

wiy
b
i

(15)

Step 2. Background covariances

P b =
2n∑
i=0

wi(x
b
i . x

b
0 − x̄)(xbi . x

b
0 − x̄)T +Q, sparsity index set I,

Pxy =
2n∑
i=0

wi(x
b
i . x

b
0 − x̄)(ybi − ȳ)T ,

Pyy =
2n∑
i=0

wi(y
b
i − ȳ)(ybi − ȳ)T +R.

(16)

Step 3. Kalman gain and analysis

KPyy = Pxy,

xa = x̄b +K(yo − ȳb),
P a = P b −K(Pxy)

T + γI, sparsity index set I.
(17)

In (16), we assume xb0 = xb0. The constant term γI in (17) is a diagonal matrix. The value of
γ is selected so that P a is positive definite. The positive definiteness is guaranteed if γ is larger
than |λmin|, where |λmin| is the smallest negative eigenvalue of

P b −K(Pxy)
T . (18)

If the updated covariance matrix is positive definite, then γ = 0. In all examples, the value of γ
is adaptively changed in every cycle depending on the smallest negative eigenvalue of (18)

The sparse UKF algorithm is based on the assumption that P a can be approximated by a
sparse matrix P a. Although the σ-points in the algorithm play a similar role as that of ensembles
in EnKF, using sparse UKF one can avoid the problem of rank deficiency. For systems with very
high dimensions, the number of ensemble members used in an EnKF is much smaller than the
dimension. As shown in Figure 1, the narrow and tall matrix of ensemble vectors makes EnKF
fundamentally a rank deficient approach. In contrast, the block diagonal matrix P a shown in
Figure 1 as a sparse approximation of P a has full rank. If Nsp of P a is an integer close to the
ensemble size of an EnKF, then the memory required by P a is smaller than that by the ensemble
matrix because of the symmetry of error covariance. The required computational load in Step
1 is extremely high if full state vectors are computed. Thanks to the sparsity, we only need to
compute the entries with indices in Ib. For a sparse UKF to be successful for problems with very
high dimensions, it is critical to have component-based numerical models so that subsets of entries
defined by Ib are computed in parallel; and most entries of state vectors are not evaluated at all.
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Figure 1: Patterns of ensemble vectors and sparse error covariances

In addition each component-based computation requires a part of the state vector only. It saves
the computer I/O load.

Memory and (I/O) requirements are big factors influencing the efficiency of computational
algorithms. Because an error covariance and its diagonal blocks are symmetric, the memory and
I/O usage can be reduced by almost a half for subproblems with symmetry. The granularity of
a computational algorithm has considerable impact on its efficiency in parallel computing. By
granularity control we mean that one can divided a high dimensional problem into subproblems
of desired dimensions. As shown in Figure 1, the error covariance and its square root consist of
sparse blocks or sparse columns. This is different from the EnKF in which state vectors in an
ensemble are dense. In a sparse approximation of P a, the number of nonzero entries, a parameter
similar to that used for distance-based localization methods, can be easily changed in P a so that
the error covariance and its square root can be grouped into smaller blocks of different sizes for
parallel computation.

2.3 Lorenz-96 model

In this section, we use a Lorenz-96 model that was first introduced in [6] to test the performance
of the sparse UKF. Consder

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F, i = 1, 2, · · · , n,

xn+1 = x1,

n = 40,

∆t = 0.025,

F = 8.

(19)

The system has chaotic trajectories as shown in Figure 2, a plot of x1(t), x2(t), x3(t). The simu-
lations are conducted based on a 4th-order Runge-Kutta discretization. The trajectories are used
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Figure 2: A chaotic trajectory of the Lorenz-96 model, x1(solid), x2(dash), x3(dot).

as the ground truth. The sparsity pattern for P a and
√
P a are assumed to be centered along the

diagonal line with a fix length. The total number of nonzero entries in each column is Nsp. We
would like to point out that the sparse matrices are approximations of the true error covariance
and its square root. The sparsity pattern of

√
P a is, in fact, different from that of P a. In the

approximation, however, we ignore the difference and use the same sparsity pattern for both. As
a result, the memory required by

√
P a is reduced almost by half. This idea works fine for the

Lorenz-96 model. However, a systematic way of choosing the sparsity pattern for
√
P a based on

given P a is an open problem that needs further study.
The numerical experimentation is based on N = 1000 uniformly distributed random initial

states in [−1 1]. The time step size is ∆t = 0.025. The total number of time steps for each
simulation is Nt = 4000. The number of observations at any given time is m = 20, i.e. every
other state variable is measured. The observational error has the Gaussian distribution with a
covariance R = I, the identity matrix. The initial background error covariance is P b(0) = 0.2I.
The following RSME is used to measure the accuracy of estimation

RSME =

√√√√ 1

n(Nt + 1)

Nt∑
k=0

||xa(k)− xtruth(k)||22. (20)

For comparison, an EnKF is applied to the same data set. The localization radius is ρ = 4 and
the inflation factor is

√
1.08. A full scale UKF based on dense error covariance is also applied as

the best estimator for comparison. As an indication of computational load, the number of entries
to be computed in each algorithm is shown in Table 2. The boxplot of simulation results is shown
in Figure 3. To summarize, the sparse UKF has considerably smaller error variation than that
of the EnKF. This is expected because the new approach avoids the problem of rank deficiency.
The medians of estimation errors are also smaller than that of EnKF. In the cases of Nsp = 7
and 11, the memory size required by the sparse error covariance is smaller than the memory size
needed to store the ensemble vectors in the EnKF if Nens = 10. The Cholesky factorization, while
maintaining the sparsity property, may require additional memory. In this example of Lorenz-96,



we use the same sparsity pattern for both
√
P a and P a. This assumption simplifies the algorithm

and reduces the memory and I/O requirements. The computational load, in the number of entry
evaluations, is increased for sparse UKF because of the number of σ-points is 2n. Reducing the
number of entries being evaluated and testing the impact of Cholesky factorization on the efficiency
of UKF is ongoing research that is not addressed in this paper.

Filter Size Entries Error Error Error

EVAL Median Mean STD

EnKF Nens = 10 400 0.3462 1.0741 1.0652
S-UKF Nsp = 7 600 0.3061 0.3067 0.0071
S-UKF Nsp = 11 920 0.2691 0.2691 0.0048

Table 2: Summary of simulation results

EnKF S-UKF S-UKF UKF
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Figure 3: Boxplot of RMSE

3 Progressive EKF

In a sparse UKF, the σ-points are computed by taking a square root of the error covariance,
such as the Cholesky factorization. The resulting σ-points are sparse. However, this process may
require additional memory and computation. In this section, we propose a progressive algorithm
of approximating error covariance without taking square roots.

3.1 Basic ideas

The main assumption for this algorithm is the following progressive relationship

Mk−1P
a(k − 1)MT

k−1 = P a(k − 1) + ∆P b, (21)

where ∆P b is assumed to be small. In (21), Mk−1 is the Jacobian of M at xa(k − 1). Similarly,
the Jacobian of H is Hk. To estimate ∆P b, assume

Mk−1 = I + ∆Mk−1. (22)



where we assume that ∆Mk−1 is small. If the system model is based on the discretization of a
differential equation with a small time step size, then

M(x(k − 1)) = x(k − 1) +O(∆tα), α ≥ 1. (23)

The Jacobian of Ok−1(∆t
α) in space variables is expected to have small value if ∆t is small, which

makes (22) a reasonable assumption. Then we have

Mk−1P
a(k − 1)MT

k−1

= (I + ∆Mk−1)P
a(k − 1)(I + ∆MT

k−1)

= P a(k − 1) + ∆Mk−1P
a(k − 1) + (∆Mk−1P

a(k − 1))T + ∆Mk−1P
a(k − 1)∆MT

k−1

≈ P a(k − 1) + ∆Mk−1P
a(k − 1) + (∆Mk−1P

a(k − 1))T .

(24)

This is in consistent with (21). It can be computed using a tangent linear model. Or it can be
approximated using the dynamical model

Mk−1P
a(k − 1)MT

k−1

= (I + ∆Mk−1)P
a(k − 1)(I + ∆MT

k−1)

≈ (M(x(k − 1) + δP a(k − 1))−M(x(k − 1))) /δ

+ (M(x(k − 1) + δP a(k − 1))−M(x(k − 1)))T /δ − P a.

(25)

where δ > 0 is the step size of a finite difference approximation of ∆Mk−1P
a. Its value should be

determined depending on the numerical model and its linearization. In (25), a vector and matrix
summation is a new matrix resulting from adding the vector to every column in the matrix.
Applying an operator to a matrix is to apply the operator to every column in the matrix.

3.2 Progressive EKF

The column vectors in the matrices in (24) and (25) are sparse. However, the number of column
vectors equals n, which can be as high as 106− 107 for some atmospheric models. Applying a full
model to all the vectors is impractical because of the high computational and I/O loads. On the
other hand, if we approximate the error covariance using a given sparsity, only a small portion of
the entries in each column vector is to be evaluated. Evaluating the entire state vector is unnec-
essary. This is the reason we need a component-based model. Then the algorithm of progressive
EKF is summarized as follows.

Algorithm II (Progressive EKF)
Given the initial analysis at t = k − 1,

xa(k − 1) and P a(k − 1). (26)

Step 1. Forecast
xb =M(xa(k − 1)),
yb = H(xb).

(27)



Step 2. Background error covariance

P b =
(
M (xa(k − 1) + δP a(k − 1), I)− xb

)
/δ

+
(
M (xa(k − 1) + δP a(k − 1), I)− xb

)T
/δ − P a +Q.

(28)

Step 3. Kalman gain and analysis

K = P bHT
k (HkP

bHT
k +R)−1,

xa = xb +K(yo − yb),
P a = (I −KHk)P

b.

(29)

Different from the sparse UKF, this algorithm avoids the computation of matrix square roots.
However, the algorithm requires that ∆P b in (21) can be approximated effectively. From (23), the
method is expected to work better for a small time step-size. If ∆t is large, ∆Mk−1 in (22) may
not be small enough. A remedy is to use a refined step-size in an inner-loop computation. More
specifically, the discrete model is a discretization of a continuous-time model. The discrete time
moment k − 1 corresponds to the continuous time moment (k − 1)∆t. We refine the step size by
dividing the time interval into np subintervals. In our examples, we choose np = 2. The refined
time steps are

(k − 1)∆t, (k − 1)∆t+
∆t

np
, · · · , (k − 1)∆t+ s

∆t

np
, · · · , k∆t, 0 ≤ s ≤ np (30)

For the inner loop, one can compute a sequence of backgrounds, x̃b(s).

ts = (k − 1)∆t+ s
∆t

np
,

x̃b(s) = M̃ts(x
a(k − 1)), s = 1, 2, · · · , np.

(31)

where M̃ts represents the refined model function in the time interval from t = (k− 1)∆t to t = ts.
In Step 2, repeat (28) np times along the sequence of background states, x̃b(s), without adding Q
until the last round. This refined Step 2 increases the computational load, while improving the
accuracy of the progressive estimation.

3.3 Examples

In the following, we apply the progressive EKF to the Lorenz-96 model using the same parameters
as in (19). The error covariance is approximated using sparsity matrices with Nsp = 7, 11, 17. For
Nsp = 11, we tested the idea of refining step-size using np = 1 and np = 2. The results are shown in
Figure 4 and summarized in Table 3. Comparing to EnKF, the error variations of the progressive
EKF are uniformly and significantly smaller. If Nsp = 7, which is smaller than the ensemble size
Nens = 10, the median value of estimation error is larger than that of the EnKF. The median
error for Nsp = 11 is comparable to that of the EnKF. If a refined step-size in (31) is applied, for
instance np = 2, the median estimation error is further reduced. Comparing to the performance
of the sparse UKF, the error variations are similar. However, the estimation error of the sparse
UKF has a smaller median in all cases. For example, to achieve a similar performance as the
sparse UKF when Nsp = 11, one has to use a larger sparsity index Nsp = 17 for the progressive
EKF. The computational load of the progressive EKF, in terms of the component evaluation, is
comparable to the EnKF, as shown in Table 3.
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Figure 4: Boxplot of RMSE. For Prograssive-KF, Nsp = 7, 11, and 17

Filter Size Entries Error Error Error

EVAL Median Mean STD

EnKF Nens = 10 400 0.3462 1.0741 1.0652
P-KF Nsp = 7

Np = 1 320 0.3845 0.3846 0.0055
P-KF Nsp = 11

Np = 1 480 0.3455 0.3458 0.0050
P-KF Nsp = 11

Np = 2 480x2 0.3041 0.3041 0.0044
P-KF Nsp = 17

Np = 3 720x2 0.2872 0.2873 0.0046

Table 3: Summary of simulation results

4 Conclusions

Two algorithms of Kalman Filters based on sparse error covariances are introduced. They are
tested using the Lorenz-96 model with 40 state variables and chaotic trajectories. Both algorithms
share the same basic idea: the error covariance is approximated using a sparse matrix. Thanks
to the sparsity, the required memory size is significantly reduced. The symmetry of the error
covariance can potentially reduce the I/O load. The analysis error covariance can be updated
as a sparse matrix in each cycle using a deterministic process, either a square root matrix or a
progressive algorithm. The updated sparse matrix is then used as the background error covariance
for the next cycle. Relative to the EnKF, the main advantage of the proposed methods is that
the estimation process do not need an ensemble; and the error covariance has a full rank. The
algorithms do not suffer issues of rank deficiency as in EnKFs. As a result, the variation of analysis
error is constantly small in all examples. Techniques of localization and covariance inflation are
unnecessary. Relative to 4D-Var methods, the proposed algorithms are mostly parallel. They
provide not only the state estimate but also the analysis error covariance. For the purpose of
scalability, we suggest that the proposed methods are applied with component-based numerical



models. From the examples, the sparse UKF has better accuracy than the progressive EKF. If
the computational load of taking square roots of sparse matrices is affordable, then the sparse
UKF is the approach of our choice. On the other hand, the progressive EKF is a simple algorithm
that avoids taking square roots of large matrices, provided that the progressive approximation of
error covariance is adequately accurate. Although most conclusions drawn in this paper are based
on simulations using the Lorenz-96 model, the algorithms are developed for general applications.
Testing the methods using different types of system models is a main topic of our future work.
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