740,357 research outputs found

    Identify, locate and separate: Audio-visual object extraction in large video collections using weak supervision

    Full text link
    We tackle the problem of audiovisual scene analysis for weakly-labeled data. To this end, we build upon our previous audiovisual representation learning framework to perform object classification in noisy acoustic environments and integrate audio source enhancement capability. This is made possible by a novel use of non-negative matrix factorization for the audio modality. Our approach is founded on the multiple instance learning paradigm. Its effectiveness is established through experiments over a challenging dataset of music instrument performance videos. We also show encouraging visual object localization results

    Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation

    Full text link
    While representation learning aims to derive interpretable features for describing visual data, representation disentanglement further results in such features so that particular image attributes can be identified and manipulated. However, one cannot easily address this task without observing ground truth annotation for the training data. To address this problem, we propose a novel deep learning model of Cross-Domain Representation Disentangler (CDRD). By observing fully annotated source-domain data and unlabeled target-domain data of interest, our model bridges the information across data domains and transfers the attribute information accordingly. Thus, cross-domain joint feature disentanglement and adaptation can be jointly performed. In the experiments, we provide qualitative results to verify our disentanglement capability. Moreover, we further confirm that our model can be applied for solving classification tasks of unsupervised domain adaptation, and performs favorably against state-of-the-art image disentanglement and translation methods.Comment: CVPR 2018 Spotligh

    Design optimization of ANN-based pattern recognizer for multivariate quality control

    Get PDF
    In manufacturing industries, process variation is known to be major source of poor quality. As such, process monitoring and diagnosis is critical towards continuous quality improvement. This becomes more challenging when involving two or more correlated variables or known as multivariate. Process monitoring refers to the identification of process status either it is running within a statistically in-control or out-of-control condition, while process diagnosis refers to the identification of the source variables of out-of-control process. The traditional statistical process control (SPC) charting scheme are known to be effective in monitoring aspects, but they are lack of diagnosis. In recent years, the artificial neural network (ANN) based pattern recognition schemes has been developed for solving this issue. The existing ANN model recognizers are mainly utilize raw data as input representation, which resulted in limited performance. In order to improve the monitoring-diagnosis capability, in this research, the feature based input representation shall be investigated using empirical method in designing the ANN model recognizer

    Kernel Graph Convolutional Neural Networks

    Full text link
    Graph kernels have been successfully applied to many graph classification problems. Typically, a kernel is first designed, and then an SVM classifier is trained based on the features defined implicitly by this kernel. This two-stage approach decouples data representation from learning, which is suboptimal. On the other hand, Convolutional Neural Networks (CNNs) have the capability to learn their own features directly from the raw data during training. Unfortunately, they cannot handle irregular data such as graphs. We address this challenge by using graph kernels to embed meaningful local neighborhoods of the graphs in a continuous vector space. A set of filters is then convolved with these patches, pooled, and the output is then passed to a feedforward network. With limited parameter tuning, our approach outperforms strong baselines on 7 out of 10 benchmark datasets.Comment: Accepted at ICANN '1

    Abstract Meaning Representation for Multi-Document Summarization

    Full text link
    Generating an abstract from a collection of documents is a desirable capability for many real-world applications. However, abstractive approaches to multi-document summarization have not been thoroughly investigated. This paper studies the feasibility of using Abstract Meaning Representation (AMR), a semantic representation of natural language grounded in linguistic theory, as a form of content representation. Our approach condenses source documents to a set of summary graphs following the AMR formalism. The summary graphs are then transformed to a set of summary sentences in a surface realization step. The framework is fully data-driven and flexible. Each component can be optimized independently using small-scale, in-domain training data. We perform experiments on benchmark summarization datasets and report promising results. We also describe opportunities and challenges for advancing this line of research.Comment: 13 page
    corecore