1,673,891 research outputs found

    M-1 engine test complex data acquisition systems

    Get PDF
    Instrumentation and data acquisition system for development testing of liquid hydrogen/liquid oxygen M-1 rocket engin

    South Pole Telescope Software Systems: Control, Monitoring, and Data Acquisition

    Full text link
    We present the software system used to control and operate the South Pole Telescope. The South Pole Telescope is a 10-meter millimeter-wavelength telescope designed to measure anisotropies in the cosmic microwave background (CMB) at arcminute angular resolution. In the austral summer of 2011/12, the SPT was equipped with a new polarization-sensitive camera, which consists of 1536 transition-edge sensor bolometers. The bolometers are read out using 36 independent digital frequency multiplexing (\dfmux) readout boards, each with its own embedded processors. These autonomous boards control and read out data from the focal plane with on-board software and firmware. An overall control software system running on a separate control computer controls the \dfmux boards, the cryostat and all other aspects of telescope operation. This control software collects and monitors data in real-time, and stores the data to disk for transfer to the United States for analysis

    Flexible data input layer architecture (FDILA) for quick-response decision making tools in volatile manufacturing systems

    Get PDF
    This paper proposes the foundation for a flexible data input management system as a vital part of a generic solution for quick-response decision making. Lack of a comprehensive data input layer between data acquisition and processing systems has been realized and thought of. The proposed FDILA is applicable to a wide variety of volatile manufacturing environments. It provides a generic platform that enables systems designers to define any number of data entry points and types regardless of their make and specifications in a standard fashion. This is achieved by providing a variable definition layer immediately on top of the data acquisition layer and before data pre-processing layer. For proof of concept, National Instruments’ Labview data acquisition software is used to simulate a typical shop floor data acquisition system. The extracted data can then be fed into a data mining module that builds cost modeling functions involving the plant’s Key Performance Factors

    The ngdp framework for data acquisition systems

    Full text link
    The ngdp framework is intended to provide a base for the data acquisition (DAQ) system software. The ngdp's design key features are: high modularity and scalability; usage of the kernel context (particularly kernel threads) of the operating systems (OS), which allows to avoid preemptive scheduling and unnecessary memory--to--memory copying between contexts; elimination of intermediate data storages on the media slower than the operating memory like hard disks, etc. The ngdp, having the above properties, is suitable to organize and manage data transportation and processing for needs of essentially distributed DAQ systems. The investigation has been performed at the Veksler and Baldin Laboratory of High Energy Physics, JINR.Comment: 21 pages, 3 figure

    SWE bridge: software interface for plug & work instrument integration into marine observation platforms

    Get PDF
    The integration of sensor systems into marine observation platforms such as gliders, cabled observatories and smart buoys requires a great deal of effort due to the diversity of architectures present in the marine acquisition systems. In the past years important steps have been taken in order to improve both standardization and interoperability, i.e. the Open Geospatial Consortium’s Sensor Web Enablement. This set of standards and protocols provide a well -defined framework to achieve standardized data chains. However a significant gap is still present in the lower -end of the data chain, between the sensor systems and the acquisition platforms. In this work a standard s -based architecture to bridge this gap is proposed in order to achieve plug & work, standardized and interoperable acquisition systems.Award-winningPostprint (published version

    Compressed Sensing for Tactile Skins

    Full text link
    Whole body tactile perception via tactile skins offers large benefits for robots in unstructured environments. To fully realize this benefit, tactile systems must support real-time data acquisition over a massive number of tactile sensor elements. We present a novel approach for scalable tactile data acquisition using compressed sensing. We first demonstrate that the tactile data is amenable to compressed sensing techniques. We then develop a solution for fast data sampling, compression, and reconstruction that is suited for tactile system hardware and has potential for reducing the wiring complexity. Finally, we evaluate the performance of our technique on simulated tactile sensor networks. Our evaluations show that compressed sensing, with a compression ratio of 3 to 1, can achieve higher signal acquisition accuracy than full data acquisition of noisy sensor data.Comment: 8 pages, 4 figures, submitted to ICRA1

    Thermal (Silicon Diode) Data Acquisition Systems

    Get PDF
    Marshall Space Flight Center s X-ray Cryogenic Facility (XRCF) has been performing cryogenic testing to 20 Kelvin since 1999. Two configurations for acquiring data from silicon diode temperature sensors have been implemented at the facility. The facility's environment is recorded via a data acquisition system capable of reading up to 60 silicon diodes. Test article temperature is recorded by a second data acquisition system capable of reading 150+ silicon diodes. The specifications and architecture of both systems will be presented

    The revolution in data gathering systems

    Get PDF
    Data acquisition systems used in NASA's wind tunnels from the 1950's through the present time are summarized as a baseline for assessing the impact of minicomputers and microcomputers on data acquisition and data processing. Emphasis is placed on the cyclic evolution in computer technology which transformed the central computer system, and finally the distributed computer system. Other developments discussed include: medium scale integration, large scale integration, combining the functions of data acquisition and control, and micro and minicomputers

    Exploiting graphic processing units parallelism to improve intelligent data acquisition system performance in JET's correlation reflectometer

    Get PDF
    The performance of intelligent data acquisition systems relies heavily on their processing capabilities and local bus bandwidth, especially in applications with high sample rates or high number of channels. This is the case of the self adaptive sampling rate data acquisition system installed as a pilot experiment in KG8B correlation reflectometer at JET. The system, which is based on the ITMS platform, continuously adapts the sample rate during the acquisition depending on the signal bandwidth. In order to do so it must transfer acquired data to a memory buffer in the host processor and run heavy computational algorithms for each data block. The processing capabilities of the host CPU and the bandwidth of the PXI bus limit the maximum sample rate that can be achieved, therefore limiting the maximum bandwidth of the phenomena that can be studied. Graphic processing units (GPU) are becoming an alternative for speeding up compute intensive kernels of scientific, imaging and simulation applications. However, integrating this technology into data acquisition systems is not a straight forward step, not to mention exploiting their parallelism efficiently. This paper discusses the use of GPUs with new high speed data bus interfaces to improve the performance of the self adaptive sampling rate data acquisition system installed on JET. Integration issues are discussed and performance evaluations are presente
    corecore