335,175 research outputs found
Multiplicative local linear hazard estimation and best one-sided cross-validation
This paper develops detailed mathematical statistical theory of a new class of cross-validation techniques of local linear kernel hazards and their multiplicative bias corrections. The new class of cross-validation combines principles of local information and recent advances in indirect cross-validation. A few applications of cross-validating multiplicative kernel hazard estimation do exist in the literature. However, detailed mathematical statistical theory and small sample performance are introduced via this paper and further upgraded to our new class of best one-sided cross-validation. Best one-sided cross-validation turns out to have excellent performance in its practical illustrations, in its small sample performance and in its mathematical statistical theoretical performance
Fast Cross-Validation via Sequential Testing
With the increasing size of today's data sets, finding the right parameter
configuration in model selection via cross-validation can be an extremely
time-consuming task. In this paper we propose an improved cross-validation
procedure which uses nonparametric testing coupled with sequential analysis to
determine the best parameter set on linearly increasing subsets of the data. By
eliminating underperforming candidates quickly and keeping promising candidates
as long as possible, the method speeds up the computation while preserving the
capability of the full cross-validation. Theoretical considerations underline
the statistical power of our procedure. The experimental evaluation shows that
our method reduces the computation time by a factor of up to 120 compared to a
full cross-validation with a negligible impact on the accuracy
- …
