136 research outputs found

    Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes

    Get PDF
    Covariance parameter estimation of Gaussian processes is analyzed in an asymptotic framework. The spatial sampling is a randomly perturbed regular grid and its deviation from the perfect regular grid is controlled by a single scalar regularity parameter. Consistency and asymptotic normality are proved for the Maximum Likelihood and Cross Validation estimators of the covariance parameters. The asymptotic covariance matrices of the covariance parameter estimators are deterministic functions of the regularity parameter. By means of an exhaustive study of the asymptotic covariance matrices, it is shown that the estimation is improved when the regular grid is strongly perturbed. Hence, an asymptotic confirmation is given to the commonly admitted fact that using groups of observation points with small spacing is beneficial to covariance function estimation. Finally, the prediction error, using a consistent estimator of the covariance parameters, is analyzed in details.Comment: 47 pages. A supplementary material (pdf) is available in the arXiv source

    Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case

    Full text link
    In parametric estimation of covariance function of Gaussian processes, it is often the case that the true covariance function does not belong to the parametric set used for estimation. This situation is called the misspecified case. In this case, it has been shown that, for irregular spatial sampling of observation points, Cross Validation can yield smaller prediction errors than Maximum Likelihood. Motivated by this observation, we provide a general asymptotic analysis of the misspecified case, for independent and uniformly distributed observation points. We prove that the Maximum Likelihood estimator asymptotically minimizes a Kullback-Leibler divergence, within the misspecified parametric set, while Cross Validation asymptotically minimizes the integrated square prediction error. In a Monte Carlo simulation, we show that the covariance parameters estimated by Maximum Likelihood and Cross Validation, and the corresponding Kullback-Leibler divergences and integrated square prediction errors, can be strongly contrasting. On a more technical level, we provide new increasing-domain asymptotic results for independent and uniformly distributed observation points.Comment: A supplementary material (pdf) is available in the arXiv source

    Differentiating the multipoint Expected Improvement for optimal batch design

    Full text link
    This work deals with parallel optimization of expensive objective functions which are modeled as sample realizations of Gaussian processes. The study is formalized as a Bayesian optimization problem, or continuous multi-armed bandit problem, where a batch of q > 0 arms is pulled in parallel at each iteration. Several algorithms have been developed for choosing batches by trading off exploitation and exploration. As of today, the maximum Expected Improvement (EI) and Upper Confidence Bound (UCB) selection rules appear as the most prominent approaches for batch selection. Here, we build upon recent work on the multipoint Expected Improvement criterion, for which an analytic expansion relying on Tallis' formula was recently established. The computational burden of this selection rule being still an issue in application, we derive a closed-form expression for the gradient of the multipoint Expected Improvement, which aims at facilitating its maximization using gradient-based ascent algorithms. Substantial computational savings are shown in application. In addition, our algorithms are tested numerically and compared to state-of-the-art UCB-based batch-sequential algorithms. Combining starting designs relying on UCB with gradient-based EI local optimization finally appears as a sound option for batch design in distributed Gaussian Process optimization

    Unsupervised Learning via Mixtures of Skewed Distributions with Hypercube Contours

    Full text link
    Mixture models whose components have skewed hypercube contours are developed via a generalization of the multivariate shifted asymmetric Laplace density. Specifically, we develop mixtures of multiple scaled shifted asymmetric Laplace distributions. The component densities have two unique features: they include a multivariate weight function, and the marginal distributions are also asymmetric Laplace. We use these mixtures of multiple scaled shifted asymmetric Laplace distributions for clustering applications, but they could equally well be used in the supervised or semi-supervised paradigms. The expectation-maximization algorithm is used for parameter estimation and the Bayesian information criterion is used for model selection. Simulated and real data sets are used to illustrate the approach and, in some cases, to visualize the skewed hypercube structure of the components
    corecore