1,718,771 research outputs found

    Online classifier adaptation for cost-sensitive learning

    Full text link
    In this paper, we propose the problem of online cost-sensitive clas- sifier adaptation and the first algorithm to solve it. We assume we have a base classifier for a cost-sensitive classification problem, but it is trained with respect to a cost setting different to the desired one. Moreover, we also have some training data samples streaming to the algorithm one by one. The prob- lem is to adapt the given base classifier to the desired cost setting using the steaming training samples online. To solve this problem, we propose to learn a new classifier by adding an adaptation function to the base classifier, and update the adaptation function parameter according to the streaming data samples. Given a input data sample and the cost of misclassifying it, we up- date the adaptation function parameter by minimizing cost weighted hinge loss and respecting previous learned parameter simultaneously. The proposed algorithm is compared to both online and off-line cost-sensitive algorithms on two cost-sensitive classification problems, and the experiments show that it not only outperforms them one classification performances, but also requires significantly less running time

    COST 733 - WG4: Applications of weather type classification

    Get PDF
    The main objective of the COST Action 733 is to achieve a general numerical method for assessing, comparing and classifying typical weather situations in the European regions. To accomplish this goal, different workgroups are established, each with their specific aims: WG1: Existing methods and applications (finished); WG2: Implementation and development of weather types classification methods; WG3: Comparison of selected weather types classifications; WG4: Testing methods for various applications. The main task of Workgroup 4 (WG4) in COST 733 implies the testing of the selected weather type methods for various classifications. In more detail, WG4 focuses on the following topics:• Selection of dedicated applications (using results from WG1), • Performance of the selected applications using available weather types provided by WG2, • Intercomparison of the application results as a results of different methods • Final assessment of the results and uncertainties, • Presentation and release of results to the other WGs and external interested • Recommend specifications for a new (common) method WG2 Introduction In order to address these specific aims, various applications are selected and WG4 is divided in subgroups accordingly: 1.Air quality 2. Hydrology (& Climatological mapping) 3. Forest fires 4. Climate change and variability 5. Risks and hazards Simultaneously, the special attention is paid to the several wide topics concerning some other COST Actions such as: phenology (COST725), biometeorology (COST730), agriculture (COST 734) and mesoscale modelling and air pollution (COST728). Sub-groups are established to find advantages and disadvantages of different classification methods for different applications. Focus is given to data requirements, spatial and temporal scale, domain area, specifi

    Soft Methodology for Cost-and-error Sensitive Classification

    Full text link
    Many real-world data mining applications need varying cost for different types of classification errors and thus call for cost-sensitive classification algorithms. Existing algorithms for cost-sensitive classification are successful in terms of minimizing the cost, but can result in a high error rate as the trade-off. The high error rate holds back the practical use of those algorithms. In this paper, we propose a novel cost-sensitive classification methodology that takes both the cost and the error rate into account. The methodology, called soft cost-sensitive classification, is established from a multicriteria optimization problem of the cost and the error rate, and can be viewed as regularizing cost-sensitive classification with the error rate. The simple methodology allows immediate improvements of existing cost-sensitive classification algorithms. Experiments on the benchmark and the real-world data sets show that our proposed methodology indeed achieves lower test error rates and similar (sometimes lower) test costs than existing cost-sensitive classification algorithms. We also demonstrate that the methodology can be extended for considering the weighted error rate instead of the original error rate. This extension is useful for tackling unbalanced classification problems.Comment: A shorter version appeared in KDD '1

    Resource and cost management

    Get PDF
    Educational lecture notes contains the fundamentals of a general theory of resource and cost management, classification of costs for decision-making, methods of constructing cost functions of the enterprise, analysis of the relationship between costs, volume and profits, the methods and systems of cost calculation, principles of cost management system. Designed for students directions 073 «Management» and 076 «Entrepreneurship, trade and exchange activity»

    Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm

    Full text link
    This paper introduces ICET, a new algorithm for cost-sensitive classification. ICET uses a genetic algorithm to evolve a population of biases for a decision tree induction algorithm. The fitness function of the genetic algorithm is the average cost of classification when using the decision tree, including both the costs of tests (features, measurements) and the costs of classification errors. ICET is compared here with three other algorithms for cost-sensitive classification - EG2, CS-ID3, and IDX - and also with C4.5, which classifies without regard to cost. The five algorithms are evaluated empirically on five real-world medical datasets. Three sets of experiments are performed. The first set examines the baseline performance of the five algorithms on the five datasets and establishes that ICET performs significantly better than its competitors. The second set tests the robustness of ICET under a variety of conditions and shows that ICET maintains its advantage. The third set looks at ICET's search in bias space and discovers a way to improve the search.Comment: See http://www.jair.org/ for any accompanying file

    Automatic Environmental Sound Recognition: Performance versus Computational Cost

    Get PDF
    In the context of the Internet of Things (IoT), sound sensing applications are required to run on embedded platforms where notions of product pricing and form factor impose hard constraints on the available computing power. Whereas Automatic Environmental Sound Recognition (AESR) algorithms are most often developed with limited consideration for computational cost, this article seeks which AESR algorithm can make the most of a limited amount of computing power by comparing the sound classification performance em as a function of its computational cost. Results suggest that Deep Neural Networks yield the best ratio of sound classification accuracy across a range of computational costs, while Gaussian Mixture Models offer a reasonable accuracy at a consistently small cost, and Support Vector Machines stand between both in terms of compromise between accuracy and computational cost
    corecore