1 research outputs found

    Shedding Light on Vacancy-Doped Copper Chalcogenides: Shape-Controlled Synthesis, Optical Properties, and Modeling of Copper Telluride Nanocrystals with Near-Infrared Plasmon Resonances

    No full text
    Size- and shape-controlled synthesis of copper chalcogenide nanocrystals (NCs) is of paramount importance for a careful engineering and understanding of their optoelectronic properties and, thus, for their exploitation in energy- and plasmonic-related applications. From the copper chalcogenide family copper telluride NCs have remained fairly unexplored as a result of a poor size-, shape-, and monodispersity control that is achieved <i>via</i> one-step syntheses approaches. Here we show that copper telluride (namely Cu<sub>2–<i>x</i></sub>Te) NCs with well-defined morphologies (spheres, rods, tetrapods) can be prepared <i>via</i> cation exchange of preformed CdTe NCs while retaining their original shape. The resulting copper telluride NCs are characterized by pronounced plasmon bands in the near-infrared (NIR), in analogy to other copper-deficient chalcogenides (Cu<sub>2–<i>x</i></sub>S, Cu<sub>2–<i>x</i></sub>Se). We demonstrate that the extinction spectra of the as-prepared NCs are in agreement with theoretical calculations based on the discrete dipole approximation and an empirical dielectric function for Cu<sub>2–<i>x</i></sub>Te. Additionally we show that the Drude model does not appropriately describe the complete set of Cu<sub>2–<i>x</i></sub>Te NCs with different shapes. In particular, the low-intensity longitudinal plasmon bands for nanorods and tetrapods are better described by a modified Drude model with an increased damping in the long-wavelength interval. Importantly, a Lorentz model of localized quantum oscillators describes reasonably well all three morphologies, suggesting that holes in the valence band of Cu<sub>2–<i>x</i></sub>Te cannot be described as fully free particles and that the effects of localization of holes are important. A similar behavior for Cu<sub>2–<i>x</i></sub>S and Cu<sub>2–<i>x</i></sub>Se NCs suggests that the effect of localization of holes can be a common property for the whole class of copper chalcogenide NCs. Taken altogether, our results represent a simple route toward copper telluride nanocrystals with well-defined shapes and optical properties and extend the understanding on vacancy-doped copper chalcogenide NCs with NIR optical resonances
    corecore