1,502,605 research outputs found

    Radial and azimuthal dynamics of the io plasma torus

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2015The moon Io orbits Jupiter emitting neutral particles from its volcanic surface. This emission is ionized and forms the Io plasma torus around Jupiter. The variation of conditions at Io and Jupiter lead to variations in the content of the plasma in the torus. Volcanoes on Io's surface erupt and change the rate of neutral input. Hot electrons (30-100 eV), whose abundances vary in azimuth, create highly ionized species. Radial variation in subcorotation velocities, velocities less than than that of the motion of the dipole magnetic field, creates shears while maintaining coherent radial structure in the torus. Poorly understood changes in plasma density circulate through the torus creating the anomalous System IV behavior that has a period slightly longer than the rotation of Jupiter's magnetic field. This thesis summarizes the research that has produced a two-dimensional physical chemistry model, tested several existing theories about subcorotation velocities, System IV variation, and hot electrons, and adopted new methods of Io plasma torus analysis. In an attempt to understand important dynamics, the thesis modeled differing scenarios such as an initialized two-peak structure, a subcorotation profile dictated by mass loading and ionospheric conductivity, and a critical combination of two populations of hot electrons that accurately mimics the observed System IV phenomenon. This model was also used to solve the inverse problem of determining the best fit for the model parameters, neutral source input rate and radial transport rate, using observations of density, temperature, and composition. In addition the thesis shows the need for multi-dimensional modeling and the results from its groundbreaking two-dimensional model

    Nanocomposites of metallic copper and spinel ferrite films: Growth and self-assembly of copper particles

    Get PDF
    Nanocomposites of metallic copper and iron oxides films have been prepared by RF-sputtering of pure CuFeO2 delafossite target. The films are made of copper and spinel ferrite crystallites of less than 10 nm in diameter. The content of metallic copper and the ferrite composition depend on the sputtering conditions. For the shortest substrate-target distances, films are made of copper and copper substituted magnetite with low copper content. The formation of the metallic and spinel phases is due to the loss of a small quantity of oxygen during sputtering. When annealed under inert atmosphere, nanometric copper particles located in the upper part of the film, move on the surface and grow due to coalescence phenomena. The particle motion can be stopped by small grooves allowing the self-assembly of copper particles

    Age-related cellular copper dynamics in the fungal ageing model Podospora anserina and in ageing human fibroblasts

    Get PDF
    In previous investigations an impact of cellular copper homeostasis on ageing of the ascomycete Podospora anserina has been demonstrated. Here we provide new data indicating that mitochondria play a major role in this process. Determination of copper in the cytosolic fraction using total reflection X-ray fluorescence spectroscopy analysis and eGfp reporter gene studies indicate an age-related increase of cytosolic copper levels. We show that components of the mitochondrial matrix (i.e. eGFP targeted to mitochondria) become released from the organelle during ageing. Decreasing the accessibility of mitochondrial copper in P. anserina via targeting a copper metallothionein to the mitochondrial matrix was found to result in a switch from a copper-dependent cytochrome-c oxidase to a copper-independent alternative oxidase type of respiration and results in lifespan extension. In addition, we demonstrate that increased copper concentrations in the culture medium lead to the appearance of senescence biomarkers in human diploid fibroblasts (HDFs). Significantly, expression of copper-regulated genes is induced during in vitro ageing in medium devoid of excess copper suggesting that cytosolic copper levels also increase during senescence of HDFs. These data suggest that the identified molecular pathway of age-dependent copper dynamics may not be restricted to P. anserina but may be conserved from lower eukaryotes to humans

    Method and apparatus for convection control of metallic halide vapor density in a metallic halide laser

    Get PDF
    An apparatus is disclosed in which a reservoir containing copper chloride is heated so that the copper chloride is maintained in a liquid form. The apparatus includes a means for flowing a buffer gas (which in the exemplary embodiment is neon) over the liquid copper chloride to provide a mixture of copper chloride vapor and neon above the liquid copper chloride. A conduit provides fluid communication between the reservoir containing the copper chloride vapor/neon mixture and the laser. The copper chloride vapor density in the laser is related to the liquid copper chloride temperature and the neon flow rate through the reservoir. In accordance with a further feature of the exemplary embodiment, neon is also provided directly to the laser in order to provide a further means of controlling the copper chloride vapor density in the laser

    Energy-efficient motors

    Get PDF
    The use of a copper-squirrel cage in induction motors has been analyzed testing a prototype rated 1.1 kW and comparing the performances with a twin machine with an aluminum cage. The comparison has been made using torque, efficiency, starting torque, and starting current. For the considered machine size, the obtained results show that the simple substitution of the aluminum with copper can improve the efficiency of no more than 1.5% at rated load. Taking into account the copper market cost trend, the use of copper cage increases the break-even time due to the higher cost of copper rotor respect to the aluminum one. For this reason, the discussion about the use of copper cage can be still considered ope

    High power metallic halide laser

    Get PDF
    A laser amplification system is disclosed whereby a metallic halide vapor such as copper chloride is caused to flow through a laser amplifier and a heat exchanger in a closed loop system so that the flow rate is altered to control the temperature rise across the length of the laser amplifier. The copper atoms within the laser amplifier should not exceed a temperature of 3000 K, so that the number of copper atoms in the metastable state will not be high enough to prevent amplification in the amplifier. A molecular dissociation apparatus is provided at the input to the laser amplifier for dissociating the copper chloride into copper atoms and ions and chlorine atoms and ions. The dissociation apparatus includes a hollow cathode tube and an annular ring spaced apart from the tube end. A voltage differential is applied between the annular ring and the hollow cathode tube so that as the copper chloride flows through, it is dissociated into copper and chlorine ions and atoms

    Copper Oxide Nanoparticles Impact Several Toxicological Endpoints and Cause Neurodegeneration in \u3cem\u3eCaenorhabditis elegans\u3c/em\u3e

    Get PDF
    Engineered nanoparticles are becoming increasingly incorporated into technology and consumer products. In 2014, over 300 tons of copper oxide nanoparticles were manufactured in the United States. The increased production of nanoparticles raises concerns regarding the potential introduction into the environment or human exposure. Copper oxide nanoparticles commonly release copper ions into solutions, which contribute to their toxicity. We quantified the inhibitory effects of both copper oxide nanoparticles and copper sulfate on C. elegans toxicological endpoints to elucidate their biological effects. Several toxicological endpoints were analyzed in C. elegans, including nematode reproduction, feeding behavior, and average body length. We examined three wild C. elegans isolates together with the Bristol N2 laboratory strain to explore the influence of different genotypic backgrounds on the physiological response to copper challenge. All strains exhibited greater sensitivity to copper oxide nanoparticles compared to copper sulfate, as indicated by reduction of average body length and feeding behavior. Reproduction was significantly reduced only at the highest copper dose, though still more pronounced with copper oxide nanoparticles compared to copper sulfate treatment. Furthermore, we investigated the effects of copper oxide nanoparticles and copper sulfate on neurons, cells with known vulnerability to heavy metal toxicity. Degeneration of dopaminergic neurons was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, mutants in the divalent-metal transporters, smf-1 or smf-2, showed increased tolerance to copper exposure, implicating both transporters in copper-induced neurodegeneration. These results highlight the complex nature of CuO nanoparticle toxicity, in which a nanoparticle-specific effect was observed in some traits (average body length, feeding behavior) and a copper ion specific effect was observed for other traits (neurodegeneration, response to stress)

    The Octarepeat Domain of the Prion Protein Binds Cu(II) with Three Distinct Coordination Modes at pH 7.4

    Get PDF
    The prion protein (PrP) binds Cu2+ in its N-terminal octarepeat domain. This unusual domain is comprised of four or more tandem repeats of the fundamental sequence PHGGGWGQ. Previous work from our laboratories demonstrates that at full copper occupancy, each HGGGW segment binds a single Cu2+. However, several recent studies suggest that low copper occupancy favors different coordination modes, possibly involving imidazoles from histidines in adjacent octapeptide segments. This is investigated here using a combination of X-band EPR, S-band EPR, and ESEEM, along with a library of modified peptides designed to favor different coordination interactions. At pH 7.4, three distinct coordination modes are identified. Each mode is fully characterized to reveal a series of copper-dependent octarepeat domain structures. Multiple His coordination is clearly identified at low copper stoichiometry. In addition, EPR detected copper−copper interactions at full occupancy suggest that the octarepeat domain partially collapses, perhaps stabilizing this specific binding mode and facilitating cooperative copper uptake. This work provides the first complete characterization of all dominant copper coordination modes at pH 7.4

    Neutron-activation analysis applied to copper ores and artifacts

    Get PDF
    Neutron activation analysis is used for quantitative identification of trace metals in copper. Establishing a unique fingerprint of impurities in Michigan copper would enable identification of artifacts made from this copper
    corecore